Unsupervised domain adaptation using eigenanalysis in kernel space for categorisation tasks

被引:4
作者
Samanta, Suranjana [1 ]
Das, Sukhendu [1 ]
机构
[1] Indian Inst Technol, VP Lab, Madras 600036, Tamil Nadu, India
关键词
unsupervised learning; Hilbert spaces; video signal processing; eigenvalues and eigenfunctions; unsupervised domain adaptation; eigenanalysis; kernel space; reproducing kernel Hilbert space; text categorisations tasks; video categorisations tasks; object categorisations tasks; eigenvectors; eigenvalues; RECOGNITION;
D O I
10.1049/iet-ipr.2014.0754
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study describes a new technique of unsupervised domain adaptation based on eigenanalysis in kernel space, for the purpose of categorisation tasks. The authors propose a transformation of data in source domain, such that the eigenvectors and eigenvalues of the transformed source domain become similar to that of the target domain. They extend this idea to the reproducing kernel Hilbert space, which enables to deal with non-linear transformation of source domain. They also propose a measure to obtain the appropriate number of eigenvectors needed for transformation. Results on object, video and text categorisations tasks using real-world datasets show that the proposed method produces better results when compared with a few recent state-of-art methods of domain adaptation.
引用
收藏
页码:925 / 930
页数:6
相关论文
共 20 条
  • [1] [Anonymous], 2012, TECHNICAL REPORT
  • [2] Speeded-Up Robust Features (SURF)
    Bay, Herbert
    Ess, Andreas
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) : 346 - 359
  • [3] Dai W., 2007, Proceedings of the 24th International Conference on Machine Learning, P193, DOI DOI 10.1145/1273496.1273521
  • [4] Duan LX, 2012, PROC CVPR IEEE, P1338, DOI 10.1109/CVPR.2012.6247819
  • [5] Domain Transfer Multiple Kernel Learning
    Duan, Lixin
    Tsang, Ivor W.
    Xu, Dong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 465 - 479
  • [6] Unsupervised Visual Domain Adaptation Using Subspace Alignment
    Fernando, Basura
    Habrard, Amaury
    Sebban, Marc
    Tuytelaars, Tinne
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 2960 - 2967
  • [7] Gong BQ, 2012, PROC CVPR IEEE, P2066, DOI 10.1109/CVPR.2012.6247911
  • [8] Gopalan R, 2011, IEEE I CONF COMP VIS, P999, DOI 10.1109/ICCV.2011.6126344
  • [9] Gretton A, 2009, NEURAL INF PROCESS S, P131
  • [10] Hamm Jihun, 2008, P 25 INT C MACH LEAR, P376