On traceable and upper traceable numbers of graphs

被引:0
|
作者
Fujie, Futaba [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Hamiltonian graphs; traceable graphs; traceable number; upper traceable number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G of order n >= 2 and a linear ordering s: v(1), v(2), ..., v(n) of V(G), define d(s) = Sigma(n-1)(i=1) d(v(i), v(i+1)). The traceable number t(G) and upper traceable number t(+)(G) of G are defined by t(G) = min{d(s)} and t(+) (G) = max{d(s)}, respectively, where the minimum and maximum are taken over all linear orderings s of V(G). Consequently, t(G) <= t(+)(G). It is known that n - 1 <= t(G) <= 2n - 4' and n - 1 <= t(+)(G) <= left perpendicularn(2)/2left perpendicular - 1 for every connected graph G of order n >= 3 and, furthermore, for every pair n, A of integers with 2 <= n - 1 <= A <= 2n - 4 there exists a graph of order n whose traceable number equals A. In this work we determine all pairs A, B of positive integers with A <= B that are realizable as the traceable number and upper traceable number, respectively, of some graph. It is also determined for which pairs n,B of integers with n - 1 <= B <= left perpendicularn(2)/2left perpendicular - 1 there exists a graph whose order equals n and upper traceable number equals B.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 8 条
  • [1] ON UPPER TRACEABLE NUMBERS OF GRAPHS
    Okamoto, Futaba
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2008, 133 (04): : 389 - 405
  • [2] The upper traceable number of a graph
    Okamoto, Futaba
    Zhang, Ping
    Saenpholphat, Varaporn
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (01) : 271 - 287
  • [3] The upper traceable number of a graph
    Futaba Okamoto
    Ping Zhang
    Varaporn Saenpholphat
    Czechoslovak Mathematical Journal, 2008, 58 : 271 - 287
  • [4] Reverse mathematics and infinite traceable graphs
    Cholak, Peter
    Galvin, David
    Solomon, Reed
    MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (1-2) : 18 - 28
  • [5] Wiener index and Harary index on Hamilton-connected and traceable graphs
    Jia, Huicai
    Liu, Ruifang
    Du, Xue
    ARS COMBINATORIA, 2018, 141 : 53 - 62
  • [6] The Total Traceable Number of a Graph
    Okamoto, Futaba
    Zhang, Ping
    UTILITAS MATHEMATICA, 2011, 85 : 13 - 31
  • [7] On the Cartesian product of an arbitrarily partitionable graph and a traceable graph
    Baudon, Olivier
    Bensmail, Julien
    Kalinowski, Rafal
    Marczyk, Antoni
    Przybylo, Jakub
    Wozniak, Mariusz
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 225 - 232
  • [8] Improved asymptotic upper bounds for the minimum number of longest cycles in regular graphs
    Jooken, Jorik
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 133 - 141