COMPACT LORENTZ MANIFOLDS WITH LOCAL SYMMETRY

被引:0
作者
Melnick, Karin [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
DYNAMICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a structure theorem for compact aspherical Lorentz manifolds with abundant local symmetry. If M is a compact, aspherical, real-analytic, complete Lorentz manifold such that the isometry group of the universal cover has semisimple identity component, then the local isometry orbits in M are roughly fibers of a fiber bundle. A corollary is that if M has an open, dense, locally homogeneous subset, then M is locally homogeneous.
引用
收藏
页码:355 / 390
页数:36
相关论文
共 40 条
[1]   Orbit nonproper dynamics on Lorentz manifolds [J].
Adams, S .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (04) :1191-1245
[2]   Orbit nonproper actions on Lorentz manifolds [J].
Adams, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (02) :201-243
[3]  
Amores A. M., 1979, J DIFFER GEOM, V14, P1
[4]  
[Anonymous], 2001, Analytic and Geometric Study of Stratified Spaces
[5]   On Lorentz dynamics: From group actions to warped products via homogeneous spaces [J].
Arouche, A. ;
Deffaf, M. ;
Zeghib, A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (03) :1253-1263
[6]  
Ballmann W., LECT NOTES
[7]  
Cahen M., 1990, Journal of Geometry and Physics, V7, P571, DOI 10.1016/0393-0440(90)90007-P
[8]   RELATIVISTIC SPACE FORMS [J].
CALABI, E ;
MARKUS, L .
ANNALS OF MATHEMATICS, 1962, 75 (01) :63-&
[9]  
D'Ambra G., 1990, SURVEYS DIFFERENTIAL, P19
[10]  
DEFFAF M, GEOM FUNCT IN PRESS