Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs

被引:19
|
作者
Niemeyer, M. [1 ]
Kleinschmidt, P. [2 ]
Walker, A. W. [3 ]
Mundt, L. E. [1 ]
Timm, C. [2 ]
Lang, R. [1 ]
Hannappel, T. [2 ]
Lackner, D. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Tech Univ Ilmenau, Inst Phys, D-98693 Ilmenau, Germany
[3] Natl Res Council Canada, 1200 Montreal Rd,M-50, Ottawa, ON K1A 0R6, Canada
关键词
BAND-GAP; HIGH DOPANT; ABSORPTION; EMISSION; ARSENIDE;
D O I
10.1063/1.5051709
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of time-resolved (TR) and power-dependent relative (PDR) photoluminescence (PL) measurements reveals the possibility of separating the radiative and non-radiative minority carrier lifetimes and measuring the sample-dependent effective radiative recombination coefficient in direct bandgap semiconductors. To demonstrate the method, measurements on 2 mu m thick p-type GaAs double-hetero structures were conducted for various doping concentrations in the range of 5x10(16) and 1x10(18) cm(-3). With a photon recycling factor of 0.76 +/- 0.04 the radiative recombination coefficient was determined to be (3.3 +/- 0.6) x 10(-10) cm(3)s(-1) for the structures with a doping concentration below 1*10(18) cm(-3), whereas the effective radiative recombination parameter for an absorber thickness of 2 mu m was directly measured to be (0.78 +/- 0.07) x 10(-10) cm(3)s(-1). For a doping concentration of 1 x 10(18) cm(-3), the radiative recombination coefficient decreases significantly probably due to the degeneracy of the semiconductor. (C) 2019 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [42] Temperature dependent radiative and non-radiative recombination lifetimes of luminescent amorphous silicon oxynitride systems
    Zhang, Pengzhan
    Liu, Xinyu
    Zhang, Ling
    Wang, Danbei
    Wu, Kongpin
    Wang, Sake
    FRONTIERS IN PHYSICS, 2024, 12
  • [43] DIFFUSION OF RADIATIVE RECOMBINATION CENTERS IN GAAS
    VOROBKALO, FM
    GLINCHUK, KD
    PROKHOROVICH, AV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1973, 7 (05): : 610 - 612
  • [44] Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells
    Tang, Senlin
    Gao, Huan
    Peng, Ying
    Li, Mingguang
    Chen, Runfeng
    Huang, Wei
    PROGRESS IN CHEMISTRY, 2022, 34 (08) : 1706 - 1722
  • [45] Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals
    Javaux, C.
    Mahler, B.
    Dubertret, B.
    Shabaev, A.
    Rodina, A. V.
    Efros, Al. L.
    Yakovlev, D. R.
    Liu, F.
    Bayer, M.
    Camps, G.
    Biadala, L.
    Buil, S.
    Quelin, X.
    Hermier, J-P.
    NATURE NANOTECHNOLOGY, 2013, 8 (03) : 206 - 212
  • [46] Taming non-radiative recombination in Si nanocrystals interlinked in a porous network
    Wu, Rihan
    Nekovic, Elida
    Collins, Jack
    Storey, Catherine J.
    Canham, Leigh T.
    Navarro-Cia, Miguel
    Kaplan, Andrey
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (22) : 13519 - 13526
  • [47] Suppressing non-radiative recombination for efficient and stable perovskite solar cells
    Tao, Jiahua
    Zhao, Chunhu
    Wang, Zhaojin
    Chen, You
    Zang, Lele
    Yang, Guang
    Bai, Yang
    Chu, Junhao
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (02) : 509 - 544
  • [48] Non-radiative recombination losses in polymer light-emitting diodes
    Kuik, M.
    Koster, L. J. A.
    Dijkstra, A. G.
    Wetzelaer, G. A. H.
    Blom, P. W. M.
    ORGANIC ELECTRONICS, 2012, 13 (06) : 969 - 974
  • [49] Degradation of InGaN lasers: Role of non-radiative recombination and injection efficiency
    Trivellin, N.
    Meneghini, M.
    De Santi, C.
    Vaccari, S.
    Meneghesso, G.
    Zanoni, E.
    Orita, K.
    Takigawa, S.
    Tanaka, T.
    Ueda, D.
    MICROELECTRONICS RELIABILITY, 2011, 51 (9-11) : 1747 - 1751
  • [50] Communication: Non-radiative recombination via conical intersection at a semiconductor defect
    Shu, Yinan
    Levine, Benjamin G.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (08):