Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs

被引:19
|
作者
Niemeyer, M. [1 ]
Kleinschmidt, P. [2 ]
Walker, A. W. [3 ]
Mundt, L. E. [1 ]
Timm, C. [2 ]
Lang, R. [1 ]
Hannappel, T. [2 ]
Lackner, D. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Tech Univ Ilmenau, Inst Phys, D-98693 Ilmenau, Germany
[3] Natl Res Council Canada, 1200 Montreal Rd,M-50, Ottawa, ON K1A 0R6, Canada
关键词
BAND-GAP; HIGH DOPANT; ABSORPTION; EMISSION; ARSENIDE;
D O I
10.1063/1.5051709
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of time-resolved (TR) and power-dependent relative (PDR) photoluminescence (PL) measurements reveals the possibility of separating the radiative and non-radiative minority carrier lifetimes and measuring the sample-dependent effective radiative recombination coefficient in direct bandgap semiconductors. To demonstrate the method, measurements on 2 mu m thick p-type GaAs double-hetero structures were conducted for various doping concentrations in the range of 5x10(16) and 1x10(18) cm(-3). With a photon recycling factor of 0.76 +/- 0.04 the radiative recombination coefficient was determined to be (3.3 +/- 0.6) x 10(-10) cm(3)s(-1) for the structures with a doping concentration below 1*10(18) cm(-3), whereas the effective radiative recombination parameter for an absorber thickness of 2 mu m was directly measured to be (0.78 +/- 0.07) x 10(-10) cm(3)s(-1). For a doping concentration of 1 x 10(18) cm(-3), the radiative recombination coefficient decreases significantly probably due to the degeneracy of the semiconductor. (C) 2019 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] CARRIER TEMPERATURE EFFECTS AND ENERGY TRANSFERS IN NON-RADIATIVE RECOMBINATION
    PARROTT, JE
    SOLID-STATE ELECTRONICS, 1976, 19 (03) : 229 - 233
  • [32] Direct evidence that dislocations are non-radiative recombination centers in GaN
    Sugahara, T
    Sato, H
    Hao, MS
    Naoi, Y
    Kurai, S
    Tottori, S
    Yamashita, K
    Nishino, K
    Romano, LT
    Sakai, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (4A): : L398 - L400
  • [33] Minimizing non-radiative recombination losses in perovskite solar cells
    Luo, Deying
    Su, Rui
    Zhang, Wei
    Gong, Qihuang
    Zhu, Rui
    NATURE REVIEWS MATERIALS, 2020, 5 (01) : 44 - 60
  • [34] IRON IMPURITIES AS NON-RADIATIVE RECOMBINATION CENTERS IN CHALCOGENIDE GLASSES
    BISHOP, SG
    TAYLOR, PC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 230 - 230
  • [35] Two channels of non-radiative recombination in InGaN/GaN LEDs
    Averkiev, N. S.
    Chernyakov, A. E.
    Levinshtein, M. E.
    Petrov, P. V.
    Yakimov, E. B.
    Shmidt, N. M.
    Shabunina, E. I.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) : 4896 - 4898
  • [36] Non-radiative recombination process in BGaAs/GaAs alloys: Two layer photothermal deflection model
    Ilahi, S.
    Baira, M.
    Saidi, F.
    Yacoubi, N.
    Auvray, L.
    Maaref, H.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 581 : 358 - 362
  • [37] Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires
    Chen, Shula L.
    Chen, Weimin M.
    Ishikawa, Fumitaro
    Buyanova, Irina A.
    SCIENTIFIC REPORTS, 2015, 5
  • [38] Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires
    Shula L. Chen
    Weimin M. Chen
    Fumitaro Ishikawa
    Irina A. Buyanova
    Scientific Reports, 5
  • [39] RADIATIVE LIFETIME OF RECOMBINATION LUMINESCENCE IN KI
    AHRENKIEL, RK
    SOLID STATE COMMUNICATIONS, 1966, 4 (01) : 21 - +
  • [40] Radiative and non-radiative recombination processes in ultra-violet InGaN light emitting diodes
    Narukawa, Y
    Saijou, S
    Kawakami, Y
    Fujita, S
    Mukai, T
    Nakamura, S
    BLUE LASER AND LIGHT EMITTING DIODES II, 1998, : 288 - 291