Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs

被引:19
|
作者
Niemeyer, M. [1 ]
Kleinschmidt, P. [2 ]
Walker, A. W. [3 ]
Mundt, L. E. [1 ]
Timm, C. [2 ]
Lang, R. [1 ]
Hannappel, T. [2 ]
Lackner, D. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Tech Univ Ilmenau, Inst Phys, D-98693 Ilmenau, Germany
[3] Natl Res Council Canada, 1200 Montreal Rd,M-50, Ottawa, ON K1A 0R6, Canada
关键词
BAND-GAP; HIGH DOPANT; ABSORPTION; EMISSION; ARSENIDE;
D O I
10.1063/1.5051709
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of time-resolved (TR) and power-dependent relative (PDR) photoluminescence (PL) measurements reveals the possibility of separating the radiative and non-radiative minority carrier lifetimes and measuring the sample-dependent effective radiative recombination coefficient in direct bandgap semiconductors. To demonstrate the method, measurements on 2 mu m thick p-type GaAs double-hetero structures were conducted for various doping concentrations in the range of 5x10(16) and 1x10(18) cm(-3). With a photon recycling factor of 0.76 +/- 0.04 the radiative recombination coefficient was determined to be (3.3 +/- 0.6) x 10(-10) cm(3)s(-1) for the structures with a doping concentration below 1*10(18) cm(-3), whereas the effective radiative recombination parameter for an absorber thickness of 2 mu m was directly measured to be (0.78 +/- 0.07) x 10(-10) cm(3)s(-1). For a doping concentration of 1 x 10(18) cm(-3), the radiative recombination coefficient decreases significantly probably due to the degeneracy of the semiconductor. (C) 2019 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices
    Hoeglund, L.
    Ting, D. Z.
    Khoshakhlagh, A.
    Soibel, A.
    Hill, C. J.
    Fisher, A.
    Keo, S.
    Gunapala, S. D.
    APPLIED PHYSICS LETTERS, 2013, 103 (22)
  • [2] The defect responsible for non-radiative recombination in GaAs materials
    Bourgoin, JC
    De Angelis, N
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2001, 16 (06) : 497 - 501
  • [3] RADIATIVE AND NON-RADIATIVE RECOMBINATION IN AMORPHOUS SILICON
    ENGEMANN, D
    FISCHER, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 458 - 458
  • [4] RADIATIVE AND NON-RADIATIVE RECOMBINATION IN GAAS/ALXGA1-XAS QUANTUM WELLS
    SERMAGE, B
    ALEXANDRE, F
    BEERENS, J
    TRONC, P
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 6 (04) : 373 - 376
  • [5] NON-RADIATIVE RECOMBINATION IN CHALCOGENIDE GLASSES
    STREET, RA
    SOLID STATE COMMUNICATIONS, 1977, 24 (05) : 363 - 365
  • [6] NON-RADIATIVE RECOMBINATION AND LUMINESCENCE IN SILICON
    PILKUHN, MH
    JOURNAL OF LUMINESCENCE, 1979, 18-9 (JAN) : 81 - 87
  • [7] RADIATIVE AND NON-RADIATIVE RECOMBINATION AT OXYGEN IN GAP(ZN,O)
    DISHMAN, JM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 348 - &
  • [8] Improved minority carrier lifetime in p-type GaN by suppressing the non-radiative recombination process
    Yan, Shumeng
    Liu, Jianxun
    Zhou, Yu
    Sun, Xiujian
    Zhong, Yaozong
    Chen, Xin
    Tang, Yongjun
    Guo, Xiaolu
    Sun, Qian
    Yang, Hui
    APPLIED PHYSICS EXPRESS, 2022, 15 (07)
  • [9] A NON-RADIATIVE RECOMBINATION IN GAAS0.61P0.39-GE
    SNYDER, PG
    GUNDERSEN, MA
    MYLES, CW
    HENRY, HG
    BYLANDER, EG
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1983, 44 (08) : 853 - 855
  • [10] TIME RESOLVED STUDY OF NON-RADIATIVE RECOMBINATION IN GAAS GAALAS HETEROSTRUCTURES
    PEREIRA, MF
    SERMAGE, B
    ALEXANDRE, F
    BEERENS, J
    AZOULAY, R
    LOUIS, AMJ
    JOURNAL DE PHYSIQUE, 1987, 48 (C-7): : 413 - 415