A robust tree method for pricing American options with the Cox-Ingersoll-Ross interest rate model

被引:8
|
作者
Appolloni, Elisa [1 ]
Caramellino, Lucia [2 ]
Zanette, Antonino [3 ]
机构
[1] Univ Roma La Sapienza, MEMOTEF, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Udine, Dipartimento Sci Econ & Stat, I-33100 Udine, Italy
关键词
American options; tree methods; Cox-Ingersoll-Ross model; stochastic interest rate;
D O I
10.1093/imaman/dpt030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a robust and stable lattice method which permits to obtain very accurate American option prices under the Cox-Ingersoll-Ross stochastic interest rate model without any numerical restriction on its parameters. Numerical results show the reliability and the accuracy of the proposed method.
引用
收藏
页码:377 / 401
页数:25
相关论文
共 23 条
  • [1] PRICING OF LIBOR FUTURES BY MARTINGALE METHOD IN COX-INGERSOLL-ROSS MODEL
    Ping LI BeiHang University
    JournalofSystemsScience&Complexity, 2010, 23 (02) : 261 - 269
  • [2] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Ping Li
    Peng Shi
    Guangdong Huang
    Xiaojun Shi
    Journal of Systems Science and Complexity, 2010, 23 : 261 - 269
  • [3] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Li, Ping
    Shi, Peng
    Huang, Guangdong
    Shi, Xiaojun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (02) : 261 - 269
  • [4] The role of adaptivity in a numerical method for the Cox-Ingersoll-Ross model
    Kelly, Conall
    Lord, Gabriel
    Maulana, Heru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 410
  • [5] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [6] An adaptive splitting method for the Cox-Ingersoll-Ross process
    Kelly, Conall
    Lord, Gabriel J.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 252 - 273
  • [7] Rate of convergence of discretized drift parameters estimators in the Cox-Ingersoll-Ross model
    Chernova, Oksana
    Dehtiar, Olena
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (13) : 4857 - 4879
  • [8] Numerical evaluation of complex logarithms in the Cox-Ingersoll-Ross model
    Teng, L.
    Ehrhardt, M.
    Guenther, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (05) : 1083 - 1095
  • [9] Parameter estimation for discretely observed Cox-Ingersoll-Ross model driven by fractional Levy processes
    Ding, Jiangrui
    Wei, Chao
    AIMS MATHEMATICS, 2023, 8 (05): : 12168 - 12184
  • [10] Estimation for the Discretely Observed Cox-Ingersoll-Ross Model Driven by Small Symmetrical Stable Noises
    Wei, Chao
    SYMMETRY-BASEL, 2020, 12 (03):