Scattering of Graphene Plasmons by Defects in the Graphene Sheet

被引:49
作者
Luis Garcia-Pomar, Juan
Nikitin, Alexey Yu.
Martin-Moreno, Luis [1 ]
机构
[1] CSIC Univ Zaragoza, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
关键词
scattering; graphene plasmons; conductivity defect; plasmon propagation; PHOTONICS;
D O I
10.1021/nn400342v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A theoretical study is presented on the scattering of graphene surface plasmons (GSPs) by defects In the graphene sheet they propagate in. These defects can be either natural (as domain boundaries, ripples, and cracks, among others) or induced by an external gate. The scattering is shown to be governed by an integral equation, derived from a plane wave expansion of the fields, which in general must be solved numerically, but it provides useful analytical results for small defects. Two main cases are considered: smooth variations of the graphene conductivity (characterized by a Gaussian conductivity profile) and sharp variations (represented by islands with different conductivity). In general, reflection largely dominates over radiation out of the graphene sheet. However, in the case of sharply defined conductivity islands, there are some values of island size and frequency where the reflectance vanishes and, correspondingly, the radiation out-of-plane is the main scattering process. For smooth defects, the reflectance spectra present a single maximum at the condition k(p)a approximate to root 2, where k(p) is the GSP wavevector and a is the spatial width of the defect. In contrast the reflectance spectra of sharp defects present periodic oscillations with period k(p)'a, where k(p)' is the GSP wavelength inside the defect. Finally, the case of cracks (gaps in the graphene conductivity) is considered, showing that the reflectance is practically unity for gap widths larger than one-tenth of the GSP wavelength.
引用
收藏
页码:4988 / 4994
页数:7
相关论文
共 45 条
[1]   Local conductance measurement of graphene layer using conductive atomic force microscopy [J].
Ahmad, Muneer ;
Han, Sang A. ;
Tien, D. Hoang ;
Jung, Jongwan ;
Seo, Yongho .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
[2]   Plasmon dispersion in semimetallic armchair graphene nanoribbons [J].
Andersen, David R. ;
Raza, Hassan .
PHYSICAL REVIEW B, 2012, 85 (07)
[3]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Elementary electronic excitations in graphene nanoribbons [J].
Brey, L. ;
Fertig, H. A. .
PHYSICAL REVIEW B, 2007, 75 (12)
[6]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[7]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[8]   Optical properties of graphene and IV-VI semiconductors [J].
Falkovsky, L. A. .
PHYSICS-USPEKHI, 2008, 51 (09) :887-897
[9]   Graphene-Antenna Sandwich Photodetector [J].
Fang, Zheyu ;
Liu, Zheng ;
Wang, Yumin ;
Ajayan, Pulickel M. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2012, 12 (07) :3808-3813
[10]   Gate-tuning of graphene plasmons revealed by infrared nano-imaging [J].
Fei, Z. ;
Rodin, A. S. ;
Andreev, G. O. ;
Bao, W. ;
McLeod, A. S. ;
Wagner, M. ;
Zhang, L. M. ;
Zhao, Z. ;
Thiemens, M. ;
Dominguez, G. ;
Fogler, M. M. ;
Castro Neto, A. H. ;
Lau, C. N. ;
Keilmann, F. ;
Basov, D. N. .
NATURE, 2012, 487 (7405) :82-85