On triangle path convexity in graphs

被引:53
作者
Changat, M
Mathew, J
机构
[1] Univ Kerala, Dept Future Studies, Trivandrum 695034, Kerala, India
[2] SB Coll, Dept Math, Changanassery 686101, India
关键词
triangle path convexity; clique separator; Caratheodory; Helly and Randon numbers;
D O I
10.1016/S0012-365X(98)00394-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Convexity invariants like Caratheodory, Helly and Radon numbers are computed for triangle path convexity in graphs. Unlike minimal path convexities, the Helly and Radon numbers behave almost uniformly for triangle path convexity. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 7 条
[1]   GRAPHS WITH INTRINSIC S3 CONVEXITIES [J].
BANDELT, HJ .
JOURNAL OF GRAPH THEORY, 1989, 13 (02) :215-228
[2]   CONVEX-SETS IN GRAPHS .2. MINIMAL PATH CONVEXITY [J].
DUCHET, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (03) :307-316
[3]  
JAMISONWALDNER RE, 1982, CONVEXITY RELATED CO, P113
[4]  
Levi FW., 1951, J. Indian Math. Soc. (N.S.), V15, P65
[5]   CARATHEODORY AND HELLY-NUMBERS OF CONVEX-PRODUCT-STRUCTURES [J].
SIERKSMA, G .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 61 (01) :275-282
[6]   DECOMPOSITION BY CLIQUE SEPARATORS [J].
TARJAN, RE .
DISCRETE MATHEMATICS, 1985, 55 (02) :221-232
[7]  
Van De Vel M, 1993, THEORY CONVEX STRUCT