Mapping nanoscale domain patterns in ferroelectric ceramics by atomic force acoustic microscopy and piezoresponse force microscopy

被引:11
|
作者
Zhou, X. L. [1 ]
Li, F. X. [1 ,2 ]
Zeng, H. R. [3 ]
机构
[1] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTACT STIFFNESS; MODULUS; BATIO3;
D O I
10.1063/1.4801976
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, nanoscale domain patterns of ferroelectric ceramics were investigated by both atomic force acoustic microscopy (AFAM) and piezoresponse force microscopy (PFM). First, we applied the dual frequency resonance tracking (DFRT) technique on AFAM and realized nanoscale modulus mapping. Then we comparatively mapped the nanoscale domain patterns in a PZT ceramics using PFM, single-frequency AFAM, and DFRT AFAM in the same scanning area. Results show that PFM can give the best contrast domain patterns and is not sensitive to cantilever stiffness. In comparison, both modes of AFAM are sensitive to cantilever stiffness and can give good contrast of domains only using very stiff cantilevers. Furthermore, both modes of AFAM can map the subsurface domain structures and the grain boundaries clearly while PFM usually cannot. Based on the resonance-frequency image obtained by the DFRT AFAM, we also obtained the nanoscale modulus of the whole scanning area which may help understand the possible domain movement under mechanical or electric fields. Finally, we suggest that, to characterize the nanoscale domain properties in ferroelectrics, PFM plus resonance tracking AFAM is the best choice. (C) 2013 AIP Publishing LLC
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy
    D. C. Hurley
    M. Kopycinska-Müller
    A. B. Kos
    JOM, 2007, 59 : 23 - 29
  • [2] Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy
    Abooalizadeh, Zahra
    Sudak, Leszek Josef
    Egberts, Philip
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 : 1332 - 1347
  • [3] Nanoscale ultrasonic subsurface imaging with atomic force microscopy
    Ma, Chengfu
    Arnold, Walter
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (18)
  • [4] Acoustic subsurface-atomic force microscopy: Three-dimensional imaging at the nanoscale
    Sharahi, Hossein J.
    Janmaleki, Mohsen
    Tetard, Laurene
    Kim, Seonghwan
    Sadeghian, Hamed
    Verbiest, Gerard J.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (03)
  • [5] Critical factors in quantitative Atomic Force Acoustic Microscopy
    Marinello, F.
    Schiavuta, P.
    Carmignato, S.
    Savio, E.
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2010, 3 (01) : 49 - 54
  • [6] Enhancing nanoscale viscoelasticity characterization in bimodal atomic force microscopy
    Adam, Casey Erin
    Piacenti, Alba Rosa
    Waters, Sarah L.
    Contera, Sonia
    SOFT MATTER, 2024, 20 (37) : 7457 - 7470
  • [7] Detection of buried reference structures by use of atomic force acoustic microscopy
    Striegler, Andre
    Koehler, Bernd
    Bendjus, Beatrice
    Roellig, Mike
    Kopycinska-Mueller, Malgorzata
    Meyendorf, Norbert
    ULTRAMICROSCOPY, 2011, 111 (08) : 1405 - 1416
  • [8] Elasticity mapping of precipitates in nickel-base superalloys using atomic force acoustic microscopy
    Phani M. Kalyan
    Anish Kumar
    Vani Shankar
    Journal of Materials Science, 2016, 51 : 8400 - 8413
  • [9] Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements
    Flores-Ruiz, F. J.
    Espinoza-Beltran, F. J.
    Diliegros-Godines, C. J.
    Siqueiros, J. M.
    Herrera-Gomez, A.
    ULTRASONICS, 2016, 71 : 271 - 277
  • [10] Mechanical Characterization of Thin Films by Use of Atomic Force Acoustic Microscopy
    Kopycinska-Mueller, Malgorzata
    Striegler, Andre
    Koehler, Bernd
    Wolter, Klaus-Juergen
    ADVANCED ENGINEERING MATERIALS, 2011, 13 (04) : 312 - 318