Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata

被引:153
|
作者
Deng, Hengfang [1 ]
Fannon, David [1 ,2 ]
Eckelman, Matthew J. [1 ]
机构
[1] Northeastern Univ, Dept Civil & Environm Engn, 360 Huntington Ave, Boston, MA 02115 USA
[2] Northeastern Univ, Sch Architecture, 360 Huntington Ave, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Building energy modeling; Building energy data; Energy use intensity; Machine learning; Random forest; Artificial neural network; ARTIFICIAL NEURAL-NETWORK; RANDOM FOREST; CONSUMPTION; SIMULATION; PERFORMANCE; BENCHMARKING; LOADS;
D O I
10.1016/j.enbuild.2017.12.031
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10-15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system Wis. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 43
页数:10
相关论文
共 34 条
  • [1] Modeling energy-efficient building loads using machine-learning algorithms for the design phase
    Sapnken, Flavian Emmanuel
    Hamed, Mohammad M.
    Soldo, Bozidar
    Tamba, Jean Gaston
    ENERGY AND BUILDINGS, 2023, 283
  • [2] The Applicability of Machine Learning Algorithms in Predictive Modeling for Sustainable Energy Management
    Abdufattokhov, Shokhjakhon
    Ibragimova, Kamila
    Gulyamova, Dilfuza
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE IOT ERA (FONES-IOT 2021), VOL 1, 2022, 129 : 379 - 391
  • [3] Data-driven energy consumption prediction of a university office building using machine learning algorithms
    Yesilyurt, Hasan
    Dokuz, Yesim
    Dokuz, Ahmet Sakir
    ENERGY, 2024, 310
  • [4] Building energy modeling (BEM) using clustering algorithms and semi-supervised machine learning approaches
    Naganathan, Hariharan
    Chong, Wai Oswald
    Chen, Xuewen
    AUTOMATION IN CONSTRUCTION, 2016, 72 : 187 - 194
  • [5] Comparison of machine learning algorithms for evaluating building energy efficiency using big data analytics
    Egwim, Christian Nnaemeka
    Alaka, Hafiz
    Egunjobi, Oluwapelumi Oluwaseun
    Gomes, Alvaro
    Mporas, Iosif
    JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2024, 22 (04) : 1325 - 1350
  • [6] PREDICTIVE MODELING FOR SUGARCANE PRODUCTION: A COMPREHENSIVE COMPARISON OF ARIMA AND MACHINE LEARNING ALGORITHMS
    Singh, Vishwajeet
    Verma, Med Ram
    Yadav, Subhash Kumar
    APPLIED BIOLOGICAL RESEARCH, 2024, 26 (02) : 199 - 209
  • [7] Statistical modeling of the building energy balance variable for screening of metered energy use in large commercial buildings
    Masuda, Hiroko
    Claridge, David E.
    ENERGY AND BUILDINGS, 2014, 77 : 292 - 303
  • [8] Automated data-driven modeling of building energy systems via machine learning algorithms
    Raetz, Martin
    Javadi, Amir Pasha
    Baranski, Marc
    Finkbeiner, Konstantin
    Mueller, Dirk
    ENERGY AND BUILDINGS, 2019, 202
  • [9] COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BUILDING ARCHETYPES DEVELOPMENT IN URBAN BUILDING ENERGY MODELING
    Ali, Usman
    Shamsi, Mohammad Haris
    Alshehri, Fawaz
    Mangina, Eleni
    O'Donnell, James
    2018 BUILDING PERFORMANCE ANALYSIS CONFERENCE AND SIMBUILD, 2018, : 60 - 67
  • [10] Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms
    Ghayour, Laleh
    Neshat, Aminreza
    Paryani, Sina
    Shahabi, Himan
    Shirzadi, Ataollah
    Chen, Wei
    Al-Ansari, Nadhir
    Geertsema, Marten
    Pourmehdi Amiri, Mehdi
    Gholamnia, Mehdi
    Dou, Jie
    Ahmad, Anuar
    REMOTE SENSING, 2021, 13 (07)