An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals

被引:4
作者
Aubert, G
Blanc-Féraud, L
March, R
机构
[1] UNSA, Projet Ariana, Lab 13S, CNRS, F-06902 Sophia Antipolos, France
[2] INRIA, F-06902 Sophia Antipolos, France
[3] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, F-06108 Nice 02, France
[4] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
关键词
Gamma-convergence; finite elements; image segmentation;
D O I
10.1016/j.na.2005.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the Gamma-convergence of a family of discrete functionals to the Mumford and Shah image segmentation functional. The functionals of the family are constructed by modifying the elliptic approximating functionals proposed by Ambrosio and Tortorelli. The quadratic term of the energy related to the edges of the segmentation is replaced by a nonconvex functional. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1908 / 1930
页数:23
相关论文
共 22 条
[1]   Free-discontinuity problems generated by singular perturbation [J].
Alicandro, R ;
Braides, A ;
Gelli, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1115-1129
[2]  
AMBROSIO I, 2000, OXFORD MATH MONOGRAP
[3]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[4]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[5]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[6]  
[Anonymous], APPL MATH SCI
[7]   Γ-convergence of discrete functionals with nonconvex perturbation for image classification [J].
Aubert, G ;
Blanc-Féraud, L ;
March, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1128-1145
[8]   DISCRETE APPROXIMATION OF A FREE DISCONTINUITY PROBLEM [J].
BELLETTINI, G ;
COSCIA, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (3-4) :201-224
[9]   Non-local approximation of the Mumford-Shah functional [J].
Braides, A ;
Maso, GD .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (04) :293-322
[10]  
Braides A., 1998, Lecture Notes in Math., V1694