Identification of networking quantum teleportation on 14-qubit IBM universal quantum computer

被引:12
作者
Huang, Ni-Ni [1 ,2 ]
Huang, Wei-Hao [1 ,2 ]
Li, Che-Ming [1 ,2 ,3 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol, Tainan 701, Taiwan
[3] Ctr Quantum Technol, Hsinchu 30013, Taiwan
关键词
ENTANGLEMENT; INFORMATION; CIRCUITS; STATE;
D O I
10.1038/s41598-020-60061-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum teleportation enables networking participants to move an unknown quantum state between the nodes of a quantum network, and hence constitutes an essential element in constructing large-sale quantum processors with a quantum modular architecture. Herein, we propose two protocols for teleporting qubits through an N-node quantum network in a highly-entangled box-cluster state or chain-type cluster state. The proposed protocols are systematically scalable to an arbitrary finite number N and applicable to arbitrary size of modules. The protocol based on a box-cluster state is implemented on a 14-qubit IBM quantum computer for N up to 12. To identify faithful networking teleportation, namely that the elements on real devices required for the networking teleportation process are all qualified for achieving teleportation task, we quantify quantum-mechanical processes using a generic classical-process model through which any classical strategies of mimicry of teleportation can be ruled out. From the viewpoint of achieving a genuinely quantum-mechanical process, the present work provides a novel toolbox consisting of the networking teleportation protocols and the criteria for identifying faithful teleportation for universal quantum computers with modular architectures and facilitates further improvements in the reliability of quantum-information processing.
引用
收藏
页数:12
相关论文
共 78 条
[11]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]
[12]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[13]   Universal Blind Quantum Computation [J].
Broadbent, Anne ;
Fitzsimons, Joseph ;
Kashefi, Elham .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :517-526
[14]   Generalized flow and determinism in measurement-based quantum computation [J].
Browne, Daniel E. ;
Kashefi, Elham ;
Mhalla, Mehdi ;
Perdrix, Simon .
NEW JOURNAL OF PHYSICS, 2007, 9
[15]  
Bussières F, 2014, NAT PHOTONICS, V8, DOI [10.1038/NPHOTON.2014.215, 10.1038/nphoton.2014.215]
[16]  
Chen S.-H, 2020, PHYS REV RES, V2
[17]   Memory-built-in quantum teleportation with photonic and atomic qubits [J].
Chen, Yu-Ao ;
Chen, Shuai ;
Yuan, Zhen-Sheng ;
Zhao, Bo ;
Chuu, Chih-Sung ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
NATURE PHYSICS, 2008, 4 (02) :103-107
[18]   Atom-like crystal defects: From quantum computers to biological sensors [J].
Childress, Lilian ;
Walsworth, Ronald ;
Lukin, Mikhail .
PHYSICS TODAY, 2014, 67 (10) :38-43
[19]   Deterministic teleportation of a quantum gate between two logical qubits [J].
Chou, Kevin S. ;
Blumoff, Jacob Z. ;
Wang, Christopher S. ;
Reinhold, Philip C. ;
Axline, Christopher J. ;
Gao, Yvonne Y. ;
Frunzio, L. ;
Devoret, M. H. ;
Jiang, Liang ;
Schoelkopf, R. J. .
NATURE, 2018, 561 (7723) :368-+
[20]   Repeated quantum error correction on a continuously encoded qubit by real-time feedback [J].
Cramer, J. ;
Kalb, N. ;
Rol, M. A. ;
Hensen, B. ;
Blok, M. S. ;
Markham, M. ;
Twitchen, D. J. ;
Hanson, R. ;
Taminiau, T. H. .
NATURE COMMUNICATIONS, 2016, 7