An algorithm for l∞ regression with quadratic complexity

被引:1
作者
Ji, J [1 ]
Kicey, C [1 ]
机构
[1] Valdosta State Univ, Dept Math & Comp Sci, Valdosta, GA 31698 USA
关键词
linear regression; l(infinity) norm; polynomial algorithm; quadratic complexity;
D O I
10.1023/A:1017916132749
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using a few very basic observations, we proposed recently a direct and finite algorithm for the computation of the l(infinity) regression line on a discrete set {(x(i), y(i))}(i)(n) under the assumption that x(1) < x(2) < ... <x(n). In this paper, we extend the algorithm to the case with at least one, possibly multiple y-values for each distinct xi. Our algorithm finds all the regression lines in O(n(2)) operations in the worst-case scenario and improves the existing best-known computational complexity result for this problem, Numerical results on random problems are included.
引用
收藏
页码:561 / 574
页数:14
相关论文
共 10 条
[1]   ALGORITHMS FOR BEST L1 AND LINFINITY LINEAR APPROXIMATIONS ON A DISCRETE SET [J].
BARRODALE, I ;
YOUNG, A .
NUMERISCHE MATHEMATIK, 1966, 8 (03) :295-+
[2]   CLINES DIRECT METHOD FOR SOLVING OVERDETERMINED LINEAR-SYSTEMS IN L-INFINITY SENSE [J].
BARTELS, RH ;
CONN, AR ;
CHARALAMBOUS, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :255-270
[3]   ANALYTICAL RESULTS FOR MINILOAD THROUGHPUT AND THE DISTRIBUTION OF DUAL COMMAND TRAVEL TIME [J].
FOLEY, RD ;
FRAZELLE, EH .
IIE TRANSACTIONS, 1991, 23 (03) :273-281
[4]  
Gibson DR, 1999, WOOD FIBER SCI, V31, P192
[5]   QUICKSORT [J].
HOARE, CAR .
COMPUTER JOURNAL, 1962, 5 (01) :10-&
[6]  
JI J, 2000, EFFICIENT METHOD 1 R
[7]  
MAHLER H, 1998, P CASUALTY ACTUARIAL, V85, P654
[8]  
Rice J., 1964, APPROXIMATION FUNCTI, V1
[9]  
Shamos MI., 1976, Recent Results and New Directions in Algorithms and Complexity Joseph, P251
[10]  
SPRENT P, 1969, MDOELS REGRESSION RE