Antibacterial isoamphipathic oligomers highlight the importance of multimeric lipid aggregation for antibacterial potency

被引:20
作者
Brown, Joseph S. [1 ]
Mohamed, Zeinab J. [1 ]
Artim, Christine M. [1 ]
Thornlow, Dana N. [1 ]
Hassler, Joseph F. [1 ]
Rigoglioso, Vincent P. [1 ]
Daniel, Susan [1 ]
Alabi, Christopher A. [1 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, 120 Olin Hall, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
SURFACE-PLASMON RESONANCE; X-RAY-SCATTERING; DE-NOVO DESIGN; ANTIMICROBIAL PEPTIDES; MEMBRANE; MECHANISM; STATE; HYDROPHOBICITY; RESISTANCE; DIFFUSION;
D O I
10.1038/s42003-018-0230-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique similar to 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treated Staphylococcus aureus mimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function.
引用
收藏
页数:11
相关论文
共 67 条
  • [1] Alexej J, 1997, J MAGN RESON, V375, P372
  • [2] Mechanisms of Antimicrobial, Cytolytic, and Cell-Penetrating Peptides: From Kinetics to Thermodynamics
    Almeida, Paulo F.
    Pokorny, Antje
    [J]. BIOCHEMISTRY, 2009, 48 (34) : 8083 - 8093
  • [3] Mechanisms and consequences of bacterial resistance to antimicrobial peptides
    Andersson, D. I.
    Hughes, D.
    Kubicek-Sutherland, J. Z.
    [J]. DRUG RESISTANCE UPDATES, 2016, 26 : 43 - 57
  • [4] Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results
    Antalek, B
    [J]. CONCEPTS IN MAGNETIC RESONANCE, 2002, 14 (04): : 225 - 258
  • [5] Antibiotic-Resistant Bugs in the 21st Century -- A Clinical Super-Challenge.
    Arias, Cesar A.
    Murray, Barbara E.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (05) : 439 - 443
  • [6] Effect of Composition on Antibacterial Activity of Sequence-Defined Cationic Oligothioetheramides
    Artim, Christine M.
    Phan, Ngoc N.
    Alabi, Christopher A.
    [J]. ACS INFECTIOUS DISEASES, 2018, 4 (08): : 1257 - 1263
  • [7] Daptomycin: mechanisms of action and resistance, and biosynthetic engineering
    Baltz, Richard H.
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2009, 13 (02) : 144 - 151
  • [8] Exploring the links between peptoid antibacterial activity and toxicity
    Bolt, H. L.
    Eggimann, G. A.
    Jahoda, C. A. B.
    Zuckermann, R. N.
    Sharples, G. J.
    Cobb, S. L.
    [J]. MEDCHEMCOMM, 2017, 8 (05) : 886 - 896
  • [9] Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?
    Brogden, KA
    [J]. NATURE REVIEWS MICROBIOLOGY, 2005, 3 (03) : 238 - 250
  • [10] Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals?
    Brogden, Nicole K.
    Brogden, Kim A.
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2011, 38 (03) : 217 - 225