Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite

被引:279
作者
Xiong, Ding-Bang [1 ]
Cao, Mu [1 ]
Guo, Qiang [1 ]
Tan, Zhanqiu [1 ]
Fan, Genlian [1 ]
Li, Zhiqiang [1 ]
Zhang, Di [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
关键词
bioinspired strategy; artificial nacre; graphene; metal matrix composite; copper; strengthening and toughening; ENHANCED MECHANICAL-PROPERTIES; NANOLAMINATED COMPOSITES; LAYER GRAPHENE; NANOCOMPOSITES; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1021/acsnano.5b01067
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metals can be strengthened by adding hard reinforcements, but such strategy usually compromises ductility and toughness. Natural nacre consists of hard and soft phases organized in a regular "brick-and-mortar" structure and exhibits a superior combination of mechanical strength and toughness, which is an attractive model for strengthening and toughening artificial composites, but such bioinspired metal matrix composite has yet to be made. Here we prepared nacre-like reduced graphene oxide (RGrO) reinforced Cu matrix composite based on a preform impregnation process, by which two-dimensional RGrO was used as "brick" and inserted into "square-and-mortar" ordered porous Cu preform (the symbol "square" means the absence of "brick"), followed by compacting. This process realized uniform dispersion and alignment of RGrO in Cu matrix simultaneously. The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to RGrO strengthening, effective crack deflection and a possible combined failure mode of RGrO. The artificial nacres also showed significantly higher strengthening efficiency than other conventional Cu matrix composites, which might be related to the alignment of RGrO.
引用
收藏
页码:6934 / 6943
页数:10
相关论文
共 60 条
[1]   Graphene-aluminum nanocomposites [J].
Bartolucci, Stephen F. ;
Paras, Joseph ;
Rafiee, Mohammad A. ;
Rafiee, Javad ;
Lee, Sabrina ;
Kapoor, Deepak ;
Koratkar, Nikhil .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27) :7933-7937
[2]   Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering [J].
Bastwros, Mina ;
Kim, Gap-Yong ;
Zhu, Can ;
Zhang, Kun ;
Wang, Shiren ;
Tang, Xiaoduan ;
Wang, Xinwei .
COMPOSITES PART B-ENGINEERING, 2014, 60 :111-118
[3]   Bioinspired design and assembly of platelet reinforced polymer films [J].
Bonderer, Lorenz J. ;
Studart, Andre R. ;
Gauckler, Ludwig J. .
SCIENCE, 2008, 319 (5866) :1069-1073
[4]  
Bouville F, 2014, NAT MATER, V13, P508, DOI [10.1038/nmat3915, 10.1038/NMAT3915]
[5]   Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J].
Cha, SI ;
Kim, KT ;
Arshad, SN ;
Mo, CB ;
Hong, SH .
ADVANCED MATERIALS, 2005, 17 (11) :1377-+
[6]   Nanoindentation study of size effects in nickel-graphene nanocomposites [J].
Chang, Shu-Wei ;
Nair, Arun K. ;
Buehler, Markus J. .
PHILOSOPHICAL MAGAZINE LETTERS, 2013, 93 (04) :196-203
[7]   Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites [J].
Chen, Lian-Yi ;
Konishi, Hiromi ;
Fehrenbacher, Axel ;
Ma, Chao ;
Xu, Jia-Quan ;
Choi, Hongseok ;
Xu, Hui-Fang ;
Pfefferkorn, Frank E. ;
Li, Xiao-Chun .
SCRIPTA MATERIALIA, 2012, 67 (01) :29-32
[8]  
Cheng Q. F., 2014, ACCOUNTS CHEM RES, V47, P156
[9]   Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide [J].
Cheng, Qunfeng ;
Wu, Mengxi ;
Li, Mingzhu ;
Jiang, Lei ;
Tang, Zhiyong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (13) :3750-3755
[10]   Enhanced strength in bulk graphene-copper composites [J].
Chu, Ke ;
Jia, Chengchang .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01) :184-190