A unifying approach for some nonexpansiveness conditions on modular vector spaces

被引:11
作者
Bejenaru, Andreea [1 ]
Postolache, Mihai [1 ,2 ,3 ]
机构
[1] Univ Politehn Bucuresti, Bucharest 060042, Romania
[2] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[3] Romanian Acad, Gh Mihoc C Iacob Inst Math Stat & Appl Math, Bucharest 050711, Romania
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2020年 / 25卷 / 05期
关键词
modular vector space; generalized nonexpansive mappings; condition (C); condition (E); FIXED-POINT THEOREMS;
D O I
10.15388/namc.2020.25.18044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a new, symmetric, nonexpansiveness condition to extend the classical Suzuki mappings. The newly introduced property is proved to be equivalent to condition (E) on Banach spaces, while it leads to an entirely new class of mappings when going to modular vector spaces; anyhow, it still provides an extension for the modular version of condition (C). In connection with the newly defined nonexpansiveness, some necessary and sufficient conditions for the existence of fixed points are stated and proved. They are based on Mann and Ishikawa iteration procedures, convenient uniform convexities and properly selected minimizing sequences.
引用
收藏
页码:827 / 845
页数:19
相关论文
共 14 条
[1]   Fixed point theorems in modular vector spaces [J].
Abdou, Afrah A. N. ;
Khamsi, Mohamed A. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08) :4046-4057
[2]   On the modular G-metric spaces and fixed point theorems [J].
Azadifar, Bahareh ;
Maramaei, Mahnaz ;
Sadeghi, Ghadir .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (04) :293-304
[3]   Generalized suzuki-type mappings in modular vector spaces [J].
Bejenaru, Andreea ;
Postolache, Mihai .
OPTIMIZATION, 2020, 69 (09) :2177-2198
[4]   On Suzuki Mappings in Modular Spaces [J].
Bejenaru, Andreea ;
Postolache, Mihai .
SYMMETRY-BASEL, 2019, 11 (03)
[5]   Fixed Point Theorems and Convergence Theorems for a New Generalized Nonexpansive Mapping [J].
Cai Donghan ;
Shi Jie ;
Liu Weiyi .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (16) :1742-1754
[6]  
De la Sen M, 2017, J COMPUT ANAL APPL, V22, P558
[7]   Edelstein's method and fixed point theorems for some generalized nonexpansive mappings [J].
Dhompongsa, S. ;
Inthakon, W. ;
Kaewkhao, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :12-17
[8]   Fixed point theory for a class of generalized nonexpansive mappings [J].
Garcia-Falset, Jesus ;
Llorens-Fuster, Enrique ;
Suzuki, Tomonari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :185-195
[9]   Numerical Reckoning Fixed Points of (E)-Type Mappings in Modular Vector Spaces [J].
Kassab, Wissam ;
Turcanu, Teodor .
MATHEMATICS, 2019, 7 (05)
[10]  
Khamsi M. A., 2015, Fixed Point Theory in Modular Function Spaces