Twitter sentiment analysis: An Arabic text mining approach based on COVID-19

被引:7
|
作者
Albahli, Saleh [1 ]
机构
[1] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah, Saudi Arabia
关键词
public health; sentiment analysis (SA); natural language processing; machine learning; ML; Synthetic Minority Over-sampling Technique (SMOTE);
D O I
10.3389/fpubh.2022.966779
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The 21st century has seen a lot of innovations, among which included the advancement of social media platforms. These platforms brought about interactions between people and changed how news is transmitted, with people now able to voice their opinion as opposed to before where only the reporters were speaking. Social media has become the most influential source of speech freedom and emotions on their platforms. Anyone can express emotions using social media platforms like Facebook, Twitter, Instagram, and YouTube. The raw data is increasing daily for every culture and field of life, so there is a need to process this raw data to get meaningful information. If any nation or country wants to know their people's needs, there should be mined data showing the actual meaning of the people's emotions. The COVID-19 pandemic came with many problems going beyond the virus itself, as there was mass hysteria and the spread of wrong information on social media. This problem put the whole world into turmoil and research was done to find a way to mitigate the spread of incorrect news. In this research study, we have proposed a model of detecting genuine news related to the COVID-19 pandemic in Arabic Text using sentiment-based data from Twitter for Gulf countries. The proposed sentiment analysis model uses Machine Learning and SMOTE for imbalanced dataset handling. The result showed the people in Gulf countries had a negative sentiment during COVID-19 pandemic. This work was done so government authorities can easily learn directly from people all across the world about the spread of COVID-19 and take appropriate actions in efforts to control it.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] COVID-19 Vaccine Sensing: Sentiment Analysis from Twitter Data
    Xu, Han
    Liu, Ruixin
    Luo, Ziling
    Xu, Minghua
    Wang, Bang
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 3200 - 3205
  • [42] Sentiment Analysis of Finnish Twitter Discussions on COVID-19 During the Pandemic
    Claes M.
    Farooq U.
    Salman I.
    Teern A.
    Isomursu M.
    Halonen R.
    SN Computer Science, 5 (2)
  • [43] Analysis of Political Sentiment Demonstrations on Twitter under COVID-19 Pandemic
    de Almeida, Yuri Luz
    Alvim, Adriana C. F.
    Felix Dias, Vania Maria
    PROCEEDINGS OF THE 19TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS, 2023, : 167 - 173
  • [44] COVID-19 vaccine sentiment analysis using public opinions on Twitter
    Chinnasamy, P.
    Suresh, V
    Ramprathap, K.
    Jebamani, B. Jency A.
    Rao, K. Srinivas
    Kranthi, M. Shiva
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 448 - 451
  • [45] Worldwide COVID-19 Vaccines Sentiment Analysis Through Twitter Content
    Ansari, Md Tarique Jamal
    Khan, Naseem Ahmad
    ELECTRONIC JOURNAL OF GENERAL MEDICINE, 2021, 18 (06):
  • [46] COVID-19 vaccine sentiment analysis using public opinions on Twitter
    Chinnasamy, P.
    Suresh, V.
    Ramprathap, K.
    Jebamani, B. Jency A.
    Rao, K. Srinivas
    Kranthi, M. Shiva
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 448 - 451
  • [47] Sentiment analysis of COVID-19 cases in Greece using Twitter data
    Samaras, Loukas
    Garcia-Barriocanal, Elena
    Sicilia, Miguel-Angel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [48] Public Sentiment Analysis on Twitter Data during COVID-19 Outbreak
    Abu Kausar, Mohammad
    Soosaimanickam, Arockiasamy
    Nasar, Mohammad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 415 - 422
  • [49] Discussions About COVID-19 Vaccination on Twitter in Turkey: Sentiment Analysis
    Mermer, Gulengul
    Ozsezer, Gozde
    DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2022, 17
  • [50] National Leaders' Usage of Twitter in Response to COVID-19: A Sentiment Analysis
    Wang, Yuming
    Croucher, Stephen M.
    Pearson, Erika
    FRONTIERS IN COMMUNICATION, 2021, 6