Unique continuation for nonnegative solutions of Schrodinger type inequalities

被引:1
|
作者
De Carli, L
Hudson, S
机构
关键词
unique continuation; Laplacian; Schrodinger type inequalities;
D O I
10.1016/j.jmaa.2005.05.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp unique continuation theorem for nonnegative H-2.1 solutions of the differential inequality vertical bar Delta u(x)vertical bar <= C vertical bar x-x vertical bar(-2)vertical bar u(x)vertical bar which vanish of finite order at x(0). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:467 / 471
页数:5
相关论文
共 50 条
  • [31] Unique continuation for positive solutions of degenerate elliptic equations
    Di Fazio, Giuseppe
    Zamboni, Pietro
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (07) : 994 - 999
  • [32] Unique continuation properties of the higher order nonlinear Schrodinger equations in one dimension
    Duan, Zhiwen
    Zheng, Quan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 941 - 965
  • [33] Unique continuation and lifting of spectral band edges of Schrodinger operators on unbounded domains
    Nakic, Ivica
    Taufer, Matthias
    Tautenhahn, Martin
    Veselic, Ivan
    Seelmann, Albrecht
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (03) : 843 - 885
  • [34] Unique continuation with weak type lower order terms
    Lu, GZ
    Wolff, T
    POTENTIAL ANALYSIS, 1997, 7 (02) : 603 - 614
  • [35] Unique Continuation with Weak Type Lower Order Terms
    Guozhen Lu
    Thomas Wolff
    Potential Analysis, 1997, 7 : 603 - 614
  • [36] Quantitative unique continuation of solutions to the bi-Laplace equations
    Fu, Xiaoyu
    Liao, Zhonghua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10501 - 10512
  • [37] A UNIQUE CONTINUATION PROPERTY ON THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC-EQUATIONS
    JIN, Z
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) : 639 - 653
  • [38] Unique continuation property of solutions to general second order elliptic systems
    Honda, Naofumi
    Lin, Ching-Lung
    Nakamura, Gen
    Sasayama, Satoshi
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (01): : 5 - 21
  • [39] Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation
    A. Alexandrou Himonas
    Gerard Misiołek
    Gustavo Ponce
    Yong Zhou
    Communications in Mathematical Physics, 2007, 271 : 511 - 522
  • [40] UNIQUE CONTINUATION OF POSITIVE SOLUTIONS FOR DOUBLY DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS
    Di Fazio, Giuseppe
    Fanciullo, Maria Stella
    Zamboni, Pietro
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,