Multiplicity results for the two-point boundary value problems at resonance

被引:6
作者
Su, JB [1 ]
Li, H
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] NE Univ Qinhuangdao, Dept Basic Courses, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
critical point; critical group; Morse theory; resonance; mountain pass lemma; multiple solutions;
D O I
10.1016/S0252-9602(06)60037-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article several existence theorems on multiple solutions for the two-point boundary value problem with resonance at both infinity and zero are proved.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 15 条
[1]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[2]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[3]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[4]  
CHANG KC, 1994, CR ACAD SCI I-MATH, V319, P441
[5]  
CHANG KC, 1994, TOPOL METHOD NONL AN, V3, P179
[6]  
Chang KC, 1983, SCI SINICA A, V24, P1241
[7]   A LIAPUNOV-TYPE RESULT WITH APPLICATION TO A DIRICHLET-TYPE 2-POINT BOUNDARY-VALUE PROBLEM AT RESONANCE [J].
DANCER, EN ;
GUPTA, CP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (03) :305-318
[8]   LANDESMAN-LAZER CONDITION FOR NONLINEAR PROBLEMS WITH JUMPING NONLINEARITIES [J].
DRABEK, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :186-199
[9]  
GROMOLL D, 1969, TOPOLOGY, V8, P361
[10]   A NONLINEAR BOUNDARY-VALUE PROBLEM WITH POTENTIAL OSCILLATING AROUND THE FIRST EIGENVALUE [J].
HABETS, P ;
MANASEVICH, R ;
ZANOLIN, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (02) :428-445