Contribution of copositive formulations to the graph partitioning problem

被引:2
|
作者
Povh, Janez [1 ,2 ]
机构
[1] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[2] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
graph partitioning problem; copositive programming; semidefinite relaxation; Primary: 90C22; 90C27; Secondary: 65K05; 90C10; SEMIDEFINITE PROGRAMMING RELAXATIONS; APPROXIMATION;
D O I
10.1080/02331934.2011.560385
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article provides analysis of several copositive formulations of the graph partitioning problem and semidefinite relaxations based on them. We prove that the copositive formulations based on results from Burer [S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120 (Ser. A) (2009), pp. 479495] and the author of the paper [J. Povh, Semidefinite approximations for quadratic programs over orthogonal matrices. J. Global Optim. 48 (2010), pp. 447463] are equivalent and that they both imply semidefinite relaxations which are stronger than the DonathHoffman eigenvalue lower bound [W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs. IBM J. Res. Develop. 17 (1973), pp. 420425] and the projected semidefinite lower bound from Wolkowicz and Zhao [H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 9697 (1999), pp. 461479].
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [1] CONTRIBUTION OF COPOSITIVE FORMULATIONS TO GRAPH PARTITIONING PROBLEM
    Povh, Janez
    PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH SOR 09, 2009, : 117 - 127
  • [2] A copositive programming approach to graph partitioning
    Povh, Janez
    Rendl, Franz
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) : 223 - 241
  • [3] Formulations and valid inequalities for the node capacitated graph partitioning problem
    Ferreira, CE
    Martin, A
    deSouza, CC
    Weismantel, R
    Wolsey, LA
    MATHEMATICAL PROGRAMMING, 1996, 74 (03) : 247 - 266
  • [4] Mathematical Formulations for the Acyclic Partitioning Problem
    Nossack, Jenny
    Pesch, Erwin
    OPERATIONS RESEARCH PROCEEDINGS 2013, 2014, : 333 - 339
  • [5] Stochastic graph partitioning: quadratic versus SOCP formulations
    Dang Phuong Nguyen
    Minoux, Michel
    Viet Hung Nguyen
    Thanh Hai Nguyen
    Sirdey, Renaud
    OPTIMIZATION LETTERS, 2016, 10 (07) : 1505 - 1518
  • [6] Stochastic graph partitioning: quadratic versus SOCP formulations
    Dang Phuong Nguyen
    Michel Minoux
    Viet Hung Nguyen
    Thanh Hai Nguyen
    Renaud Sirdey
    Optimization Letters, 2016, 10 : 1505 - 1518
  • [7] Polynomial observables in the graph partitioning problem
    Marchisio, MA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (01): : 13 - 18
  • [8] Revisiting the Isoperimetric Graph Partitioning Problem
    Danda, Sravan
    Challa, Aditya
    Sagar, B. S. Daya
    Najman, Laurent
    IEEE ACCESS, 2019, 7 : 50636 - 50649
  • [9] Efficient Algorithms for a Graph Partitioning Problem
    Vaishali, S.
    Atulya, M. S.
    Purohit, Nidhi
    FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 29 - 42
  • [10] The copositive matrix problem
    He, Ming
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 221 - 224