Coupling precipitation strengthening and transformation induced plasticity to produce a superior combination of strength and ductility in a high entropy alloy

被引:6
|
作者
Huang, Kailan [1 ]
Zhang, Yang [1 ]
Zhang, Zhongwu [1 ,2 ]
Yu, Yongzheng [1 ]
Li, Junpeng [1 ]
Han, Jihong [1 ]
Dong, Kai [1 ]
Liaw, Peter K. [3 ]
Baker, Ian [4 ]
Sun, Lixin [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
[2] State Key Lab Met Mat Marine Equipment & Applicat, Anshan 114009, Liaoning, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
High entropy alloy; Precipitation strengthening; Stacking fault energy; Transformation induced plasticity; Strength-ductility trade-off; TENSILE PROPERTIES; MARTENSITIC-TRANSFORMATION; MECHANICAL-PROPERTIES; DESIGN; FCC; MICROSTRUCTURES; RESISTANCE; BEHAVIOR; ROOM;
D O I
10.1016/j.jallcom.2022.167356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The strength-ductility trade-off has always been a difficult issue in the development of highperformance structural materials. In this work, a new non-equiatomic Fe37.5Ni30Co22.5Al5Ti5 (at%) high entropy alloy (HEA) was developed, which shows both excellent strength and ductility. The yield strength of the aged HEA reached 1094 MPa, which is more than twice that of the solid-solution HEA, while the ultimate tensile strength was 1275 MPa, and the elongation to failure was similar to 38%. The high yield strength resulted from precipitation strengthening provided by a high number density of L12-Ni3(Al, Ti) nanoprecipitates. Both a small grain size and the nanoprecipitates can induce high local stresses, enhancing the phase transfor-mation from face-centered cubic (FCC) to martensite that occurs in this HEA, and which can lead to the good ductility. As much as possible to keep strength-ductility through the coupling between precipitation strengthening and TRIP effect is a suitable strategy to overcome the strength and ductility trade-off.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Extraordinary strength-ductility combination in bidirectional heterostructured CoCrFeMnNi high-entropy alloy
    Wang, Chengchi
    Cao, Yu
    Li, Jingge
    Zhu, Dehua
    Chen, Leiqing
    Sun, Jianxiang
    Chen, Jie
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (12):
  • [22] Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy
    Zhang, T.
    Zhao, R. D.
    Wu, F. F.
    Lin, S. B.
    Jiang, S. S.
    Huang, Y. J.
    Chen, S. H.
    Eckert, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 780 (780):
  • [23] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [24] Superior strength-ductility synergy of FeMnCrNiAlSi high entropy alloy with heterogeneous structures
    Li, Yingchao
    Jin, Xi
    Lan, Aidong
    Qiao, Junwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1025
  • [25] A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment
    Han, Z. H.
    Liang, S.
    Yang, J.
    Wei, R.
    Zhang, C. J.
    MATERIALS CHARACTERIZATION, 2018, 145 : 619 - 626
  • [26] Synergism between coherent precipitation strengthening and FCC-HCP type transformation-induced plasticity
    Huang, Dong
    Zhuang, Yanxin
    MATERIALS & DESIGN, 2022, 223
  • [27] Synergistic effect of precipitation strengthening and multi-heterostructure on the improvement of strength and ductility in NbC-reinforced FeMnCoCr high entropy alloys
    Wang, Qi
    Li, Xiaolin
    Song, Kaiyan
    Deng, Xiangtao
    Wang, Zhaodong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 853
  • [28] A high-strength precipitation hardened cobalt-free high-entropy alloy
    Luebbe, Matthew
    Duan, Jiaqi
    Zhang, Fan
    Poplawsky, Jonathan
    Pommeranke, Hans
    Arivu, Maalavan
    Hoffman, Andrew
    Buchely, Mario
    Wen, Haiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 870
  • [29] Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition
    Han, Yu
    Li, Huabing
    Feng, Hao
    Li, Kemei
    Tian, Yanzhong
    Jiang, Zhouhua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 789
  • [30] Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation
    Gao, N.
    Lu, D. H.
    Zhao, Y. Y.
    Liu, X. W.
    Liu, G. H.
    Wu, Y.
    Liu, G.
    Fan, Z. T.
    Lu, Z. P.
    George, E. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 : 1028 - 1035