The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana

被引:42
|
作者
Martinez-Ballesta, Mcarmen [1 ]
Moreno-Fernandez, Diego A. [2 ]
Castejon, Diego [1 ]
Ochando, Cristina [1 ]
Morandini, Piero A. [3 ]
Carvajal, Micaela [1 ]
机构
[1] CSIC, CEBAS, Plant Nutr Dept, Murcia 30100, Spain
[2] CSIC, CEBAS, Dept Food Sci & Technol, Murcia 30100, Spain
[3] Univ Milan, CNR, Inst Biophys, Dept Biosci, Milan, Italy
来源
FRONTIERS IN PLANT SCIENCE | 2015年 / 6卷
关键词
Arabidopsis thaliana; Brassicaceae; glucosinolates; hydraulic conductance; plasma membrane intrinsic protein; TRANSCRIPTION FACTOR; SECONDARY METABOLITES; COORDINATED CONTROL; BIOSYNTHESIS; EXPRESSION; TOLERANCE; RESPONSES; SALINITY; LEAVES; GENES;
D O I
10.3389/fpls.2015.00524
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. Exposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT) and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Novel ABA-Responsive TaSRHP Gene from Wheat Contributes to Enhanced Resistance to Salt Stress in Arabidopsis thaliana
    Hou, Xiaona
    Liang, Yingzhu
    He, Xiaoliang
    Shen, Yinzhu
    Huang, Zhanjing
    PLANT MOLECULAR BIOLOGY REPORTER, 2013, 31 (04) : 791 - 801
  • [32] Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress
    Wang, Yao
    Wang, Min
    Ye, Xiaoxue
    Liu, Hua
    Takano, Tetsuo
    Tsugama, Daisuke
    Liu, Shenkui
    Bu, Yuanyuan
    PLANT SCIENCE, 2020, 300
  • [33] Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana
    Tasseva, G
    Richard, L
    Zachowski, A
    FEBS LETTERS, 2004, 566 (1-3) : 115 - 120
  • [34] Production of branched root hairs under progressive drought stress in Arabidopsis thaliana
    Bobrownyzky, J.
    CYTOLOGY AND GENETICS, 2016, 50 (05) : 324 - 329
  • [35] Exploring Natural Variations in Arabidopsis thaliana: Plant Adaptability to Salt Stress
    Lombardi, Marco
    Bellucci, Manuel
    Cimini, Sara
    Locato, Vittoria
    Loreto, Francesco
    De Gara, Laura
    PLANTS-BASEL, 2024, 13 (08):
  • [36] Arabidopsis thaliana Plants with Different Levels of Aliphatic- and Indolyl-Glucosinolates Affect Host Selection and Performance of Bemisia tabaci
    Markovich, Oshry
    Kafle, Dinesh
    Elbaz, Moshe
    Malitsky, Sergey
    Aharoni, Asaph
    Schwarzkopf, Alexander
    Gershenzon, Jonathan
    Morin, Shai
    JOURNAL OF CHEMICAL ECOLOGY, 2013, 39 (11-12) : 1361 - 1372
  • [37] Application of exogenous xyloglucan oligosaccharides affects molecular responses to salt stress in Arabidopsis thaliana seedlings
    Gonzalez-Perez, Lien
    Paez-Watson, Timothy
    Alvarez-Suarez, Jose M.
    Obando-Rojas, Mayra C.
    Bonifaz-Arcos, Edison
    Viteri, Gabriela
    Rivas-Romero, Fernando
    Tejera, Eduardo
    Rogers, Hilary J.
    Cabrere, Juan C.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2018, 18 (04) : 1187 - 1205
  • [38] Molecular responses to water stress in Arabidopsis thaliana
    Shinozaki, K
    Yamaguchi-Shinozaki, K
    Mizoguchi, T
    Urao, T
    Katagiri, T
    Nakashima, K
    Abe, H
    Ichimura, K
    Liu, QA
    Nanjyo, T
    Uno, Y
    Iuchi, S
    Seki, M
    Ito, T
    Hirayama, T
    Mikami, K
    JOURNAL OF PLANT RESEARCH, 1998, 111 (1102) : 345 - 351
  • [39] Arabidopsis thaliana VDAC2 involvement in salt stress response pathway
    Wen, Guo-qin
    Cai, Liang
    Liu, Zhen
    Li, De-kuan
    Luo, Qin
    Li, Xu-feng
    Wan, Jian-mei
    Yang, Yi
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (55): : 11588 - 11593
  • [40] Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress
    Sperdouli, Ilektra
    Ouzounidou, Georgia
    Moustakas, Michael
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)