Hybrid poplar trees were exposed to eleven organic compounds in hydroponic systems. The eleven contaminants were common pollutants with a wide range of physio-chemical properties such as the octanol-water partition coefficient, Henry's constant, vapor pressure, and molecular weight. Contaminants, C-14-labeled, were introduced into the root zone, and contaminant transport and fate were examined. Aqueous concentrations were monitored throughout each experiment as was vapor phase concentrations in the air stream passing over the leaves. At experiment conclusion, plant tissues were oxidized to determine C-14 concentrations. The uptake, distribution, and volatilization of these contaminants varied greatly among the 11 contaminants in the study. Uptake and translocation of the contaminants ranged from < 0.3% (of the applied C-14-labeled compound) for 1,2,4-trichlorobenzene to 20% for benzene. Volatile compounds were volatilized from the leaves. Volatilization in the transpiration stream was related to the vapor pressure of the compound. The fate and transport mechanisms investigated in this study provide valuable insight into the potential fate of contaminants in full-scale phytoremediation.