Deep Self-Taught Hashing for Image Retrieval

被引:35
|
作者
Liu, Yu [1 ]
Song, Jingkuan [2 ,3 ]
Zhou, Ke [1 ]
Yan, Lingyu [4 ]
Liu, Li [5 ]
Zou, Fuhao [6 ]
Shao, Ling [5 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Key Lab Informat Storage Syst, Sch Comp Sci & Technol,Minist Educ China, Wuhan 430074, Hubei, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci, Chengdu 611731, Sichuan, Peoples R China
[4] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Hubei, Peoples R China
[5] Univ East Anglia, Sch Comp Sci, Norwich NR1 1NN, Norfolk, England
[6] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep Learning; hashing; image retrieval; self-taught; QUANTIZATION;
D O I
10.1109/TCYB.2018.2822781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hashing algorithm has been widely used to speed up image retrieval due to its compact binary code and fast distance calculation. The combination with deep learning boosts the performance of hashing by learning accurate representations and complicated hashing functions. So far, the most striking success in deep hashing have mostly involved discriminative models, which require labels. To apply deep hashing on datasets without labels, we propose a deep self-taught hashing algorithm (DSTH), which generates a set of pseudo labels by analyzing the data itself, and then learns the hash functions for novel data using discriminative deep models. Furthermore, we generalize DSTH to support both supervised and unsupervised cases by adaptively incorporating label information. We use two different deep learning framework to train the hash functions to deal with out-of-sample problem and reduce the time complexity without loss of accuracy. We have conducted extensive experiments to investigate different settings of DSTH, and compared it with state-of-the-art counterparts in six publicly available datasets. The experimental results show that DSTH outperforms the others in all datasets.
引用
收藏
页码:2229 / 2241
页数:13
相关论文
共 50 条
  • [31] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Shen, Yang
    Lai, Hanjiang
    Zhang, Chongyang
    Mei, Lin
    Hu, Chuanping
    Yao, Chen
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 208 - 216
  • [32] Hierarchical deep hashing for image retrieval
    Song, Ge
    Tan, Xiaoyang
    FRONTIERS OF COMPUTER SCIENCE, 2017, 11 (02) : 253 - 265
  • [33] Deep Saliency Smoothing Hashing for Drone Image Retrieval
    Chen, Yaxiong
    Huang, Jinghao
    Mou, Lichao
    Jin, Pu
    Xiong, Shengwu
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [34] Discriminative Deep Quantization Hashing for Face Image Retrieval
    Tang, Jinhui
    Lin, Jie
    Li, Zechao
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (12) : 6154 - 6162
  • [35] Deep Multi-Scale Attention Hashing Network for Large-Scale Image Retrieval
    Feng H.
    Wang N.
    Tang J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (04): : 35 - 45
  • [36] Unsupervised Deep K-Means Hashing for Efficient Image Retrieval and Clustering
    Dong, Xiao
    Liu, Li
    Zhu, Lei
    Cheng, Zhiyong
    Zhang, Huaxiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3266 - 3277
  • [37] Deep Residual Hashing Network for Image Retrieval
    Jimenez-Lepe, Edwin
    Mendez-Vazquez, Andres
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 780 - 781
  • [38] Piecewise supervised deep hashing for image retrieval
    Yannuan Li
    Lin Wan
    Ting Fu
    Weijun Hu
    Multimedia Tools and Applications, 2019, 78 : 24431 - 24451
  • [39] Deep multiscale divergence hashing for image retrieval
    Wang, Xianyang
    Guo, Qingbei
    Zhao, Xiuyang
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (02)
  • [40] Unsupervised Deep Triplet Hashing for Image Retrieval
    Meng, Lingtao
    Zhang, Qiuyu
    Yang, Rui
    Huang, Yibo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1489 - 1493