Deep Self-Taught Hashing for Image Retrieval

被引:35
|
作者
Liu, Yu [1 ]
Song, Jingkuan [2 ,3 ]
Zhou, Ke [1 ]
Yan, Lingyu [4 ]
Liu, Li [5 ]
Zou, Fuhao [6 ]
Shao, Ling [5 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Key Lab Informat Storage Syst, Sch Comp Sci & Technol,Minist Educ China, Wuhan 430074, Hubei, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu 611731, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci, Chengdu 611731, Sichuan, Peoples R China
[4] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Hubei, Peoples R China
[5] Univ East Anglia, Sch Comp Sci, Norwich NR1 1NN, Norfolk, England
[6] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep Learning; hashing; image retrieval; self-taught; QUANTIZATION;
D O I
10.1109/TCYB.2018.2822781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hashing algorithm has been widely used to speed up image retrieval due to its compact binary code and fast distance calculation. The combination with deep learning boosts the performance of hashing by learning accurate representations and complicated hashing functions. So far, the most striking success in deep hashing have mostly involved discriminative models, which require labels. To apply deep hashing on datasets without labels, we propose a deep self-taught hashing algorithm (DSTH), which generates a set of pseudo labels by analyzing the data itself, and then learns the hash functions for novel data using discriminative deep models. Furthermore, we generalize DSTH to support both supervised and unsupervised cases by adaptively incorporating label information. We use two different deep learning framework to train the hash functions to deal with out-of-sample problem and reduce the time complexity without loss of accuracy. We have conducted extensive experiments to investigate different settings of DSTH, and compared it with state-of-the-art counterparts in six publicly available datasets. The experimental results show that DSTH outperforms the others in all datasets.
引用
收藏
页码:2229 / 2241
页数:13
相关论文
共 50 条
  • [21] Hierarchical deep hashing for image retrieval
    Ge Song
    Xiaoyang Tan
    Frontiers of Computer Science, 2017, 11 : 253 - 265
  • [22] Deep Progressive Hashing for Image Retrieval
    Bai, Jiale
    Ni, Bingbing
    Wang, Minsi
    Li, Zefan
    Cheng, Shuo
    Yang, Xiaokang
    Hu, Chuanping
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 3178 - 3193
  • [23] An improved deep hashing model for image retrieval with binary code similarities
    Liu, Huawen
    Wu, Zongda
    Yin, Minghao
    Yu, Donghua
    Zhu, Xinzhong
    Lou, Jungang
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [24] Graph Regularized Unsupervised Deep Hashing for Large Scale Image Retrieval
    Yu, Shuying
    Sun, Yingxiang
    Guo, Zixian
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 292 - 297
  • [25] Deep attention sampling hashing for efficient image retrieval
    Feng, Hao
    Wang, Nian
    Zhao, Fa
    Huo, Wei
    NEUROCOMPUTING, 2023, 559
  • [26] Deep Feature Pyramid Hashing for Efficient Image Retrieval
    Redaoui, Adil
    Belloulata, Kamel
    INFORMATION, 2023, 14 (01)
  • [27] Deep spatial attention hashing network for image retrieval
    Ge, Lin-Wei
    Zhang, Jun
    Xia, Yi
    Chen, Peng
    Wang, Bing
    Zheng, Chun-Hou
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
  • [28] Quadruplet-based deep hashing for image retrieval
    Zhu, Jie
    Chen, Zhipeng
    Zhao, Li
    Wu, Shufang
    NEUROCOMPUTING, 2019, 366 : 161 - 169
  • [29] Unsupervised deep hashing with node representation for image retrieval
    Wang, Yangtao
    Song, Jingkuan
    Zhou, Ke
    Liu, Yu
    PATTERN RECOGNITION, 2021, 112
  • [30] Deep linear discriminant analysis hashing for image retrieval
    Yan, Lingyu
    Lu, Hanlin
    Wang, Chunzhi
    Ye, Zhiwei
    Chen, Hongwei
    Ling, Hefei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 15101 - 15119