Solitons and cnoidal waves of the Klein-Gordon-Zakharov equation in plasmas

被引:21
作者
Ebadi, Ghodrat [2 ]
Krishnan, E. V. [3 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Univ Tabriz, Fac Math Sci, Tabriz 5166614766, Iran
[3] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
来源
PRAMANA-JOURNAL OF PHYSICS | 2012年 / 79卷 / 02期
关键词
Solitons; cnoidal waves; integrability; 1-SOLITON SOLUTION; INSTABILITY;
D O I
10.1007/s12043-012-0307-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the Klein-Gordon-Zakharov equation with power-law nonlinearity. This is a coupled nonlinear evolution equation. The solutions for this equation are obtained by the travelling wave hypothesis method, (G'/G) method and the mapping method.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 15 条
[1]   The G′/G method and 1-soliton solution of the Davey-Stewartson equation [J].
Ebadi, Ghodrat ;
Biswas, Anjan .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :694-698
[2]   Application of the G′/G-expansion method for nonlinear diffusion equations with nonlinear source [J].
Ebadi, Ghodrat ;
Biswas, Anjan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07) :1391-1398
[3]   Dynamics and bifurcations of travelling wave solutions of R(m, n) equations [J].
Feng, Dahe ;
Li, Jibin .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04) :555-574
[4]   Instability of standing wave, global existence and blowup for the Klein-Gordon-Zakharov system with different-degree nonlinearities [J].
Gan, Zaihui ;
Guo, Boling ;
Zhang, Jian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :4097-4128
[5]   Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions [J].
Gan, ZH ;
Zhang, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) :219-231
[6]   1-Soliton solution of the Klein-Gordon-Zakharov equation with power law nonlinearity [J].
Ismail, M. S. ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4186-4196
[7]   Solutions to the Zakharov-Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods [J].
Krishnan, E. V. ;
Biswas, A. .
PHYSICS OF WAVE PHENOMENA, 2010, 18 (04) :256-261
[8]   Exact solutions to the combined KdV-mKdV equation by the extended mapping method [J].
Krishnan, EV ;
Peng, YZ .
PHYSICA SCRIPTA, 2006, 73 (04) :405-409
[9]   Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations [J].
Li, Jibin .
CHAOS SOLITONS & FRACTALS, 2007, 34 (03) :867-871
[10]   From the Klein-Gordon-Zakharov system to a singular nonlinear Schrodinger system [J].
Masmoudi, Nader ;
Nakanishi, Kenji .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04) :1073-1096