Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions

被引:74
作者
Bethuel, F
Brezis, H
Orlandi, G
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
[3] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
D O I
10.1006/jfan.2001.3791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded, simply connected, regular domain of R-n, N greater than or equal to 2. For 0 < epsilon < 1, let u(epsilon): Omega --> C be a smooth solution of the Ginzburg Landau equation in Omega with Dirichlet boundary condition g(epsilon), i.e., [GRAPHICS] We are interested in the asymptotic behavior of u, as c goes to zero under the assumption that E-epsilon(u(epsilon)) less than or equal to M-omicron \ log epsilon \ and some conditions on g(epsilon) which allow singularities of dimension N - 3 on partial derivative Omega. (C) 2001 Academic Press.
引用
收藏
页码:432 / 520
页数:89
相关论文
共 31 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[2]  
Almeida L, 1997, HOUSTON J MATH, V23, P733
[3]  
Almeida L, 1999, REV MAT IBEROAM, V15, P487
[4]  
Ambrosio L., 1997, Ann. Scuola Norm. Sup. Pisa CI. Sci, V25, P27
[5]  
[Anonymous], 1993, COMMUN ANAL GEOM
[6]   A note on the Hodge theory for functionals with linear growth [J].
Baldo, S ;
Orlandi, G .
MANUSCRIPTA MATHEMATICA, 1998, 97 (04) :453-467
[7]  
BETHUEL F, 1995, ANN I H POINCARE-AN, V12, P243
[8]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[9]   Small energy solutions to the Ginzburg-Landau equation [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10) :763-770
[10]   On the structure of the Sobolev space H1/2 with values into the circle [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (02) :119-124