Room Temperature Synthesis of Graphene Nanosheets

被引:18
作者
Mandal, Peetam [1 ]
Naik, M. Jaya Prakash [1 ]
Saha, Mitali [1 ]
机构
[1] Natl Inst Technol, Agartala 799046, India
关键词
graphene; graphite; Raman spectroscopy; stirring; surfactants; BOTTOM-UP APPROACH; EPITAXIAL GRAPHENE; HIGH-QUALITY; LAYER GRAPHENE; QUANTUM DOTS; OXIDE; EXFOLIATION; GRAPHITE; HUMMERS; FILMS;
D O I
10.1002/crat.201700250
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The domain of graphene's application is highly multifaceted in the recent years but developing quintessential quality of graphene is quite challenging for industrial sectors via facile route. In this article, an indigenous one step production of graphene from graphite powder by mere stirring and using eco-friendly aqueous solvent is reported. This fabrication process also bypass the conventional multistep involved previously. The role of sodium dodecyl sulfate (SDS) as a surfactant and the effect of stirring at different time intervals are studied, which clearly indicates that the surfactant facilitates the dispersion of the precursor in water at room temperature and the prolonged stirring helps to break the labile van der Waals forces within the graphitic structure.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] Anastas P., 1998, GREEN CHEM THEORY PR
  • [2] Bepete G, 2017, NAT CHEM, V9, P347, DOI [10.1038/NCHEM.2669, 10.1038/nchem.2669]
  • [3] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [4] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [5] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [6] Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties
    Byun, Yearin
    Coskun, Ali
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (07) : 2576 - 2583
  • [7] Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/nnano.2015.340, 10.1038/NNANO.2015.340]
  • [8] Monolayer graphene from graphite oxide
    Dideykin, A.
    Aleksenskiy, A. E.
    Kirilenko, D.
    Brunkov, P.
    Goncharov, V.
    Baidakova, M.
    Sakseev, D.
    Vul', A. Ya.
    [J]. DIAMOND AND RELATED MATERIALS, 2011, 20 (02) : 105 - 108
  • [9] Preparation and characterization of graphene oxide paper
    Dikin, Dmitriy A.
    Stankovich, Sasha
    Zimney, Eric J.
    Piner, Richard D.
    Dommett, Geoffrey H. B.
    Evmenenko, Guennadi
    Nguyen, SonBinh T.
    Ruoff, Rodney S.
    [J]. NATURE, 2007, 448 (7152) : 457 - 460
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191