Clustered solutions for supercritical elliptic equations on Riemannian manifolds

被引:4
作者
Chen, Wenjing [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Clustered solutions; supercritical elliptic equation on manifolds; Lyapunov-Schmidt reduction procedure; MULTIPEAK SOLUTIONS; SCALAR CURVATURE; YAMABE PROBLEM; BLOW-UP; PERTURBATIONS; MULTIPLICITY;
D O I
10.1515/anona-2017-0277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a smooth compact Riemannian manifold of dimension n >= 5. We are concerned with the following elliptic problem: -Delta(g )u + a(x)u = u(n)(+)(2/n)(-2+epsilon), u > 0 in M , where Delta(g) = div(g) (del) is the Laplace-Beltrami operator on M, a(x) is a C-2 function on M such that the operator -Delta(g) + a is coercive, and epsilon > 0 is a small real parameter. Using the Lyapunov -Schmidt reduction procedure, we obtain that the problem under consideration has a k-peaks solution for positive integer k >= 2, which blow up and concentrate at one point in M.
引用
收藏
页码:1213 / 1226
页数:14
相关论文
共 25 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[2]   On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds [J].
Benci, Vieri ;
Bonanno, Claudio ;
Micheletti, Anna Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) :464-489
[3]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[4]   Singularly perturbed nonlinear elliptic problems on manifolds [J].
Byeon, J ;
Park, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (04) :459-477
[5]   On perturbations of the fractional Yamabe problem [J].
Choi, Woocheol ;
Kim, Seunghyeok .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (01)
[6]   Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds [J].
Dancer, E. N. ;
Micheletti, A. M. ;
Pistoia, A. .
MANUSCRIPTA MATHEMATICA, 2009, 128 (02) :163-193
[7]   Multipeak solutions for asymptotically critical elliptic equations on Riemannian manifolds [J].
Deng, Shengbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :859-881
[8]  
Druet O, 2004, INT MATH RES NOTICES, V2004, P1143
[9]   The effect of linear perturbations on the Yamabe problem [J].
Esposito, Pierpaolo ;
Pistoia, Angela ;
Vetois, Jerome .
MATHEMATISCHE ANNALEN, 2014, 358 (1-2) :511-560
[10]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408