Broadband High-Energy All-Fiber Laser at 1.6 μm

被引:24
作者
Kang, Jiqiang [1 ]
Kong, Cihang [1 ]
Feng, Pingping [1 ]
Wei, Xiaoming [1 ,2 ]
Luo, Zhi-Chao [3 ]
Lam, Edmund Y. [4 ]
Wong, Kenneth K. Y. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Photon Syst Res Lab, Hong Kong, Hong Kong, Peoples R China
[2] CALTECH, Andrew & Peggy Cherng Dept Med Engn, Pasadena, CA 91125 USA
[3] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Guangzhou 510006, Guangdong, Peoples R China
[4] Univ Hong Kong, Dept Elect & Elect Engn, Imaging Syst Lab, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Erbium doped fiber; mode-locked fiber laser; chirped pulse amplifier; soliton self-frequency shift; SELF-FREQUENCY SHIFT; SATURABLE ABSORBER; NORMAL-DISPERSION; SOLITON; GAIN; TRANSMISSION; RANGE; BRAIN; ER;
D O I
10.1109/LPT.2017.2786461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A broadband high-energy all-fiber laser at 1.6-mu m window with erbium-doped fiber mode locked by nonlinear polarization rotation technology is demonstrated. The direct output optical spectrum centered at 1.6 mu m has a bandwidth of 52.4 nm. The fiber laser delivers a pulse energy of 3.9 nJ with 9.3-MHz repetition rate at 220-mW 976-nm pump power. Based on it, a wavelength-tunable optical source with a wavelength tuning range from 1.6 to 1.8 mu m is demonstrated through soliton self-frequency shift. To satisfy much longer wavelength demands in some special application scenario, e.g., deep brain imaging with multi-photon microscopy, a chirped pulse amplifier was constructed to boost the pulse energy to 14 nJ, and the wavelength can be tuned from 1.6 to 1.94 mu m with those amplified pulses. These fiber sources at the L-band and a longer wavelength can explore a wider scope in deep biotissue imaging area for lower water absorption.
引用
收藏
页码:311 / 314
页数:4
相关论文
共 32 条
[1]   OPTICAL COHERENCE TOMOGRAPHIC IMAGING OF HUMAN TISSUE AT 1.55 μM AND 1.81 μM USING ER- AND TM-DOPED FIBER SOURCES [J].
Bouma, Brett E. ;
Nelson, Lynn E. ;
Tearney, Guillermo J. ;
Jones, David J. ;
Brezinski, Mark E. ;
Fujimoto, James G. .
JOURNAL OF BIOMEDICAL OPTICS, 1998, 3 (01) :76-79
[2]   L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber [J].
Du, J. ;
Zhang, S. M. ;
Li, H. F. ;
Meng, Y. C. ;
Li, X. L. ;
Hao, Y. P. .
LASER PHYSICS LETTERS, 2012, 9 (12) :896-900
[3]   CHARACTERIZATION AND OPTIMIZATION CRITERIA FOR FILTERLESS ERBIUM-DOPED FIBER LASERS [J].
FRANCO, P ;
MIDRIO, M ;
TOZZATO, A ;
ROMAGNOLI, M ;
FONTANA, F .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (06) :1090-1097
[4]   THEORY OF THE SOLITON SELF-FREQUENCY SHIFT [J].
GORDON, JP .
OPTICS LETTERS, 1986, 11 (10) :662-664
[5]  
Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/nphoton.2011.345, 10.1038/NPHOTON.2011.345]
[6]   ENERGY QUANTIZATION IN FIGURE 8 FIBER LASER [J].
GRUDININ, AB ;
RICHARDSON, DJ ;
PAYNE, DN .
ELECTRONICS LETTERS, 1992, 28 (01) :67-68
[7]   1.6 μm emission based on linear loss control in a Er:Yb doped double-clad fiber laser [J].
Guesmi, Khmaies ;
Meng, Yichang ;
Niang, Alioune ;
Mouchel, Paul ;
Salhi, Mohamed ;
Bahloul, Faouzi ;
Attia, Rabah ;
Sanchez, Francois .
OPTICS LETTERS, 2014, 39 (22) :6383-6386
[8]  
Horton NG, 2013, NAT PHOTONICS, V7, P205, DOI [10.1038/nphoton.2012.336, 10.1038/NPHOTON.2012.336]
[9]   REFRACTIVE-INDEXES OF WATER AND ICE IN THE 0.65-MU-M TO 2.5-MU-M SPECTRAL RANGE [J].
KOU, LH ;
LABRIE, D ;
CHYLEK, P .
APPLIED OPTICS, 1993, 32 (19) :3531-3540
[10]   Soliton self-frequency shift: Experimental demonstrations and applications [J].
Lee, Jennifer H. ;
van Howe, James ;
Xu, Chris ;
Liu, Xiang .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (03) :713-723