Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron

被引:45
|
作者
Lei, Cheng [1 ,2 ]
Sun, Yuqing [2 ,3 ]
Khan, Eakalak [4 ]
Chen, Season S. [2 ]
Tsang, Daniel C. W. [2 ]
Graham, Nigel J. D. [5 ]
Ok, Yong Sik [6 ,7 ]
Yang, Xin [8 ]
Lin, Daohui [1 ]
Feng, Yujie [3 ]
Li, Xiang-Dong [2 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
[4] North Dakota State Univ, Civil & Environm Engn Dept, Dept 2470,POB 6050, Fargo, ND 58108 USA
[5] Imperial Coll London, Dept Civil & Environm Engn, Environm & Water Resources Engn, London SW7 2AZ, England
[6] Korea Univ, Korea Biochar Res Ctr, OJERI, Seoul 02841, South Korea
[7] Korea Univ, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
[8] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
nZVI; Alginate entrapment; 1,1,2-trichloroethane; Carbon tetrachloride; Iron dissolution; Fracturing wastewater treatment; ALGINATE BEADS; SHALE GAS; TREATMENT OPTIONS; NANOPARTICLES; NZVI; DEGRADATION; REMEDIATION; TRICHLOROETHYLENE; ADSORPTION; REACTIVITY;
D O I
10.1016/j.chemosphere.2017.12.151
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the increasing application of hydraulic fracturing, it is urgent to develop an effective and economically feasible method to treat the large volumes of fracturing wastewater. In this study, bare and entrapped nanoscale zero-valent iron (nZVI) were introduced for the removal of carbon tetrachloride (CT) and 1,1,2-trichloroethane (TCA) in model high-salinity fracturing wastewater. With increasing ionic strength (I) from Day-1 (I = 0.35 M) to Day-90 (I = 4.10 M) wastewaters, bare nZVI presented significantly lower removal efficiency of CT (from 53.5% to 38.7%) and 1,1,2-TCA (from 71.1% to 21.7%) and underwent more serious Fe dissolution from 1.31 +/- 1.19% in Day-1 to 5.79 +/- 0.32% in Day-90 wastewater. Particle aggregation induced by high ionic strength was primarily responsible for the lowered performance of nZVI due to less available reactive sites on nZVI surface. The immobilization of nZVI in alginate with/without polyvinyl alcohol provided resistance to particle aggregation and contributed to the superior performance of entrapped nZVI in Day-90 wastewater for 1,1,2-TCA removal (62.6-72.3%), which also mitigated Fe dissolution (4.00-4.69%). Both adsorption (by polymer matrix) and reduction (by immobilized nZVI) were involved in the 1,1,2-TCA removal by entrapped nZVI. However, after 1-month immersion in synthetic fracturing wastewater, a marked drop in the reactivity of entrapped nZVI for 1,1,2-TCA removal from Day-90 wastewater was observed with significant release of Na and total organic carbon. In summary, bare nZVI was sensitive to the nature of the fracturing wastewater, while the use of environmentally benign entrapped nZVI was more promising for wastewater treatment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 50 条
  • [31] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [32] Aqueous phosphate removal using nanoscale zero-valent iron
    Almeelbi, Talal
    Bezbaruah, Achintya
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (07)
  • [33] Insight into the removal of graphene oxide by nanoscale zero-valent iron
    Zhang, Zehua
    Liu, Xia
    Wu, Jin
    Ren, Xuemei
    Li, Jiaxing
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 314
  • [34] Aqueous phosphate removal using nanoscale zero-valent iron
    Talal Almeelbi
    Achintya Bezbaruah
    Journal of Nanoparticle Research, 2012, 14
  • [35] Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron
    Liu, Xue
    Cao, Zhen
    Yuan, Zilin
    Zhang, Jing
    Guo, Xingpan
    Yang, Yi
    He, Feng
    Zhao, Yaping
    Xu, Jiang
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 508 - 518
  • [36] Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles
    Xia, Siqing
    Gu, Zaoli
    Zhang, Zhiqiang
    Zhang, Jiao
    Hermanowicz, Slawomir W.
    CHEMICAL ENGINEERING JOURNAL, 2014, 257 : 98 - 104
  • [37] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868
  • [38] Removal of U(VI) from aqueous solution by nanoscale zero-valent iron
    Li, X.-Y., 1600, Atomic Energy Press (34):
  • [39] More effective treatment of chlorinated solvents by Cu-amended nanoscale zero-valent iron stabilized with carboxymethylcellulose
    Franze, Andrew
    Agrawal, Abinash
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [40] Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes
    Lv, Xiaoshu
    Xu, Jiang
    Jiang, Guangming
    Xu, Xinhua
    CHEMOSPHERE, 2011, 85 (07) : 1204 - 1209