Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron

被引:45
|
作者
Lei, Cheng [1 ,2 ]
Sun, Yuqing [2 ,3 ]
Khan, Eakalak [4 ]
Chen, Season S. [2 ]
Tsang, Daniel C. W. [2 ]
Graham, Nigel J. D. [5 ]
Ok, Yong Sik [6 ,7 ]
Yang, Xin [8 ]
Lin, Daohui [1 ]
Feng, Yujie [3 ]
Li, Xiang-Dong [2 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
[4] North Dakota State Univ, Civil & Environm Engn Dept, Dept 2470,POB 6050, Fargo, ND 58108 USA
[5] Imperial Coll London, Dept Civil & Environm Engn, Environm & Water Resources Engn, London SW7 2AZ, England
[6] Korea Univ, Korea Biochar Res Ctr, OJERI, Seoul 02841, South Korea
[7] Korea Univ, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
[8] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
nZVI; Alginate entrapment; 1,1,2-trichloroethane; Carbon tetrachloride; Iron dissolution; Fracturing wastewater treatment; ALGINATE BEADS; SHALE GAS; TREATMENT OPTIONS; NANOPARTICLES; NZVI; DEGRADATION; REMEDIATION; TRICHLOROETHYLENE; ADSORPTION; REACTIVITY;
D O I
10.1016/j.chemosphere.2017.12.151
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the increasing application of hydraulic fracturing, it is urgent to develop an effective and economically feasible method to treat the large volumes of fracturing wastewater. In this study, bare and entrapped nanoscale zero-valent iron (nZVI) were introduced for the removal of carbon tetrachloride (CT) and 1,1,2-trichloroethane (TCA) in model high-salinity fracturing wastewater. With increasing ionic strength (I) from Day-1 (I = 0.35 M) to Day-90 (I = 4.10 M) wastewaters, bare nZVI presented significantly lower removal efficiency of CT (from 53.5% to 38.7%) and 1,1,2-TCA (from 71.1% to 21.7%) and underwent more serious Fe dissolution from 1.31 +/- 1.19% in Day-1 to 5.79 +/- 0.32% in Day-90 wastewater. Particle aggregation induced by high ionic strength was primarily responsible for the lowered performance of nZVI due to less available reactive sites on nZVI surface. The immobilization of nZVI in alginate with/without polyvinyl alcohol provided resistance to particle aggregation and contributed to the superior performance of entrapped nZVI in Day-90 wastewater for 1,1,2-TCA removal (62.6-72.3%), which also mitigated Fe dissolution (4.00-4.69%). Both adsorption (by polymer matrix) and reduction (by immobilized nZVI) were involved in the 1,1,2-TCA removal by entrapped nZVI. However, after 1-month immersion in synthetic fracturing wastewater, a marked drop in the reactivity of entrapped nZVI for 1,1,2-TCA removal from Day-90 wastewater was observed with significant release of Na and total organic carbon. In summary, bare nZVI was sensitive to the nature of the fracturing wastewater, while the use of environmentally benign entrapped nZVI was more promising for wastewater treatment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 50 条
  • [21] Catalytic hydrodechlorination of chlorinated ethenes bly nanoscale zero-valent iron
    Song, Hocheol
    Carraway, Elizabeth R.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 78 (1-2) : 53 - 60
  • [22] Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron
    Shi, Li-na
    Zhang, Xin
    Chen, Zu-liang
    WATER RESEARCH, 2011, 45 (02) : 886 - 892
  • [23] Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon
    Fu, Fenglian
    Han, Weijiang
    Huang, Chijun
    Tang, Bing
    Hu, Min
    DESALINATION AND WATER TREATMENT, 2013, 51 (13-15) : 2680 - 2686
  • [24] Nanoscale zero-valent iron for remediation of toxicants and wastewater treatment
    Gebre S.H.
    Environmental Technology Reviews, 2023, 12 (01) : 390 - 419
  • [25] Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron
    Zhang, Zhi-Yong
    Lu, Mang
    Zhang, Zhong-Zhi
    Xiao, Meng
    Zhang, Min
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 243 : 105 - 111
  • [26] Uranium Removal from Groundwater and Wastewater Using Clay-Supported Nanoscale Zero-Valent Iron
    Kornilovych, Borys
    Kovalchuk, Iryna
    Tobilko, Viktoriia
    Ubaldini, Stefano
    METALS, 2020, 10 (11) : 1 - 12
  • [27] Removal of chromium(VI) from wastewater by Mg-aminoclay coated nanoscale zero-valent iron
    Wang, Rong
    Jing, Guohua
    Zhou, Xiaobin
    Lv, Bihong
    JOURNAL OF WATER PROCESS ENGINEERING, 2017, 18 : 134 - 143
  • [28] PROCESSES AFFECTING REDUCTIVE DECHLORINATION OF CHLORINATED SOLVENTS BY ZERO-VALENT IRON
    MATHESON, LJ
    TRATNYEK, PG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 91 - ENVR
  • [29] Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing
    Sun, Yuqing
    Chen, Season S.
    Tsang, Daniel C. W.
    Graham, Nigel J. D.
    Ok, Yong Sik
    Feng, Yujie
    Li, Xiang-Dong
    CHEMOSPHERE, 2017, 167 : 163 - 170
  • [30] Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate
    Krajangpan, Sita
    Bermudez, Juan J. Elorza
    Bezbaruah, Achintya N.
    Chisholm, Bret J.
    Khan, Eakalak
    WATER SCIENCE AND TECHNOLOGY, 2008, 58 (11) : 2215 - 2222