External reinforcement of hydrocarbon membranes by a three-dimensional interlocking interface for mechanically durable polymer electrolyte membrane fuel cells

被引:13
作者
Yuk, Seongmin [1 ]
Yuk, Jinok [2 ]
Kim, Tae-Ho [2 ]
Hong, Young Taik [2 ]
Lee, Dong-Hyun [1 ]
Hyun, Jonghyun [1 ]
Choi, Sungyu [1 ]
Doo, Gisu [1 ]
Lee, Dong Wook [1 ]
Kim, Hee-Tak [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Tech, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Res Inst Chem Technol, Membrane Res Ctr, 141 Gajeong Ro, Daejeon 34114, South Korea
[3] Korea Adv Inst Sci & Technol, Inst NanoCentury, Adv Battery Ctr, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Three-dimensional interlocking interface; Hydrocarbon membrane; External reinforcement effect; Mechanical stability; Polymer electrolyte membrane fuel cell; PROTON-EXCHANGE MEMBRANE; POLY(ETHER ETHER KETONE); SULFONATED HYDROCARBON; POLYELECTROLYTES; CONDUCTIVITY; FABRICATION; DURABILITY; POLYIMIDES; COPOLYMERS; STABILITY;
D O I
10.1016/j.jpowsour.2019.01.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although, the use of hydrocarbon membranes is one of the ways to reduce the cost of polymer electrolyte membrane fuel cells, it cannot be practically adopted due to its low mechanical durability under a dynamic wet/ dry operation. Here, we present an externally-reinforced hydrocarbon membrane achieved by a three dimensional interlocking interfacial layer which forms a strong interfacial bonding between the hydrocarbon membrane and the catalyst layers. Although a conventional hydrocarbon membrane is easily delaminated from gas diffusion electrodes, the use of the three dimensional interlocking interfacial layer, prepared with a polystyrene nanoparticle template method, enhances the interfacial adhesion by 207 times. The hydrocarbon membrane, tightly connected to the gas diffusion electrodes by the three dimensional interlocking interfacial layers, has a humidity cycling durability that is 1.9 times higher in the membrane electrode assembly level by restricting the dimensional change of the membrane. Furthermore, due to the proton conducting property of the three dimensional interlocking interfacial layer, the external reinforcement does not cause any power performance losses.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 43 条
  • [1] Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest
    Antonio Asensio, Juan
    Sanchez, Eduardo M.
    Gomez-Romero, Pedro
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) : 3210 - 3239
  • [2] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [3] Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials
    Chang, JH
    Park, JH
    Park, GG
    Kim, CS
    Park, OO
    [J]. JOURNAL OF POWER SOURCES, 2003, 124 (01) : 18 - 25
  • [4] Recent developments in proton exchange membranes for fuel cells
    Devanathan, Ram
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) : 101 - 119
  • [5] Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization
    Du, Xin
    He, Junhui
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (03) : 1755 - 1760
  • [6] Novel sulfonated polyimides as polyelectrolytes for fuel cell application.: 1.: Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid
    Fang, JH
    Guo, XX
    Harada, S
    Watari, T
    Tanaka, K
    Kita, H
    Okamoto, K
    [J]. MACROMOLECULES, 2002, 35 (24) : 9022 - 9028
  • [7] Fly G. W., 2014, U.S. Patent, Patent No. [8, 8658331]
  • [8] AQUIVION™ - The short-side-chain and low-EW PFSA for next-generation PEFCs expands production and utilization
    Gebert, M.
    Ghielmi, A.
    Merlo, L.
    Corasaniti, M.
    Arcella, V.
    [J]. FUEL CELL SEMINAR 2009, 2010, 26 (01): : 279 - 283
  • [9] Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity, of polyimides from 9,9-bis(4-aminophenyl)fluorene-2,7-disulfonic acid
    Guo, XX
    Fang, JH
    Watari, T
    Tanaka, K
    Kita, H
    Okamoto, KI
    [J]. MACROMOLECULES, 2002, 35 (17) : 6707 - 6713
  • [10] Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling
    Ishikawa, Hiroshi
    Teramoto, Takeshi
    Ueyama, Yasuhiro
    Sugawara, Yasushi
    Sakiyama, Yoko
    Kusakabe, Masato
    Miyatake, Kenji
    Uchida, Makoto
    [J]. JOURNAL OF POWER SOURCES, 2016, 325 : 35 - 41