Assessment and Prediction of Depression and Anxiety Risk Factors in Schoolchildren: Machine Learning Techniques Performance Analysis

被引:12
|
作者
Qasrawi, Radwan [1 ,2 ]
Polo, Stephanny Paola Vicuna [3 ]
Abu Al-Halawa, Diala [4 ]
Hallaq, Sameh [5 ]
Abdeen, Ziad [4 ]
机构
[1] Al Quds Univ, Dept Comp Sci, Sch St,140,5th FL, Ramallah 51000, Palestine
[2] Istinye Univ, Dept Comp Engn, Istanbul, Turkey
[3] Al Quds Univ, Ctr Business Innovat & Technol, Jerusalem, Palestine
[4] Al Quds Univ, Fac Med, Jerusalem, Palestine
[5] Al Quds Univ, Al Quds Bard Coll Arts & Sci, Jerusalem, Palestine
关键词
machine learning; depression; anxiety; schoolchildren; school-age children; children; youth; young adult; transition-aged youth; early childhood education; prediction; random forest; HEALTH; DISORDER;
D O I
10.2196/32736
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Depression and anxiety symptoms in early childhood have a major effect on children's mental health growth and cognitive development. The effect of mental health problems on cognitive development has been studied by researchers for the last 2 decades. Objective: In this paper, we sought to use machine learning techniques to predict the risk factors associated with schoolchildren's depression and anxiety. Methods: The study sample consisted of 3984 students in fifth to ninth grades, aged 10-15 years, studying at public and refugee schools in the West Bank. The data were collected using the health behaviors schoolchildren questionnaire in the 2013-2014 academic year and analyzed using machine learning to predict the risk factors associated with student mental health symptoms. We used 5 machine learning techniques (random forest [RF], neural network, decision tree, support vector machine [SVM], and naive Bayes) for prediction. Results: The results indicated that the SVM and RF models had the highest accuracy levels for depression (SVM: 92.5%; RF: 76.4%) and anxiety (SVM: 92.4%; RF: 78.6%). Thus, the SVM and RF models had the best performance in classifying and predicting the students' depression and anxiety. The results showed that school violence and bullying, home violence, academic performance, and family income were the most important factors affecting the depression and anxiety scales. Conclusions: Overall, machine learning proved to be an efficient tool for identifying and predicting the associated factors that influence student depression and anxiety. The machine learning techniques seem to be a good model for predicting abnormal depression and anxiety symptoms among schoolchildren, so the deployment of machine learning within the school information systems might facilitate the development of health prevention and intervention programs that will enhance students'mental health and cognitive development.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Innovative Integration of Machine Learning Techniques for Early Prediction of Metabolic Syndrome Risk Factors
    Vasquez Rosero, Shendry Balmore
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT IV, 2024, 14818 : 20 - 36
  • [32] Prediction and Analysis of Customer Complaints Using Machine Learning Techniques
    Alarifi, Ghadah
    Rahman, Mst Farjana
    Hossain, Md Shamim
    INTERNATIONAL JOURNAL OF E-BUSINESS RESEARCH, 2023, 19 (01)
  • [33] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)
  • [34] Machine learning techniques for explaining air pollution prediction
    Kusy, Maciej
    Kowalski, Piotr A.
    Szwagrzyk, Marcin
    Konior, Aleksander
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [35] A clinical support system for classification and prediction of depression using machine learning methods
    Benfares, Chaymae
    Akhrif, Ouidad
    El Idrissi, Younes El Bouzekri
    Hamid, Karim
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (04) : 1619 - 1632
  • [36] Prediction of wastewater treatment plant performance through machine learning techniques
    Mahanna, Hani
    El-Rashidy, Nora
    Kaloop, Mosbeh R.
    El-Sapakh, Shaker
    Alluqmani, Ayed
    Hassan, Raouf
    DESALINATION AND WATER TREATMENT, 2024, 319
  • [37] Prediction of candidemia with machine learning techniques: state of the art
    Giacobbe, Daniele Roberto
    Marelli, Cristina
    Mora, Sara
    Cappello, Alice
    Signori, Alessio
    Vena, Antonio
    Guastavino, Sabrina
    Rosso, Nicola
    Campi, Cristina
    Giacomini, Mauro
    Bassetti, Matteo
    FUTURE MICROBIOLOGY, 2024, 19 (10) : 931 - 940
  • [38] Assessing the Polygenic Risk between Anxiety and Gut Microbiota Using Machine Learning
    Liu, Zhe
    Zhai, Mingxia
    Song, Weichen
    Bao, Yihang
    Cai, Wenxiang
    Lin, Guan Ning
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 12 - 18
  • [39] Assessment on Occurrences of Depression and Anxiety and Associated Risk Factors in the Infertile Chinese Men
    Yang, Bin
    Zhang, Jianchao
    Qi, Yuxia
    Wang, Pu
    Jiang, Ronghuan
    Li, Hongjun
    AMERICAN JOURNAL OF MENS HEALTH, 2017, 11 (03) : 767 - 774
  • [40] A machine-learning-derived online prediction model for depression risk in COPD patients: A retrospective cohort study from CHARLS
    Zhao, Xuanna
    Wang, Yunan
    Li, Jiahua
    Liu, Weiliang
    Yang, Yuting
    Qiao, Youping
    Liao, Jinyu
    Chen, Min
    Li, Dongming
    Wu, Bin
    Huang, Dan
    Wu, Dong
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 377 : 284 - 293