Multi-input integrative learning using deep neural networks and transfer learning for cyberbullying detection in real-time code-mix data

被引:19
|
作者
Kumar, Akshi [1 ]
Sachdeva, Nitin [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi, India
关键词
Social media; Cyberbullying; Deep learning; Multi-lingual; Code-mix;
D O I
10.1007/s00530-020-00672-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic detection of cyberbullying in social media content is a natural language understanding and generic text classification task. The cultural diversities, country-specific trending topics hash-tags on social media, the unconventional use of typographical resources such as capitals, punctuation, emojis and easy availability of native language keyboards add to the variety and volume of user-generated content compounding the linguistic challenges. This research focuses on cyberbullying detection in the code-mix data, specifically the Hinglish, which refers to the juxtaposition of words from the Hindi and English languages. We explore the problem of cyberbullying prediction and propose MIIL-DNN, a multi-input integrative learning model based on deep neural networks. MIIL-DNN combines information from three sub-networks to detect and classify bully content in real-time code-mix data. It takes three inputs, namely English language features, Hindi language features (transliterated Hindi converted to the Hindi language) and typographic features, which are learned separately using sub-networks (capsule network for English, bi-LSTM for Hindi and MLP for typographic). These are then combined into one unified representation to be used as the input for a final regression output with linear activation. The advantage of using this model-level multi-lingual fusion is that it operates with the unique distribution of each input type without increasing the dimensionality of the input space. The robustness of the technique is validated on two datasets created by scraping data from the popular social networking sites, namely Twitter and Facebook. Experimental evaluation reveals that MIIL-DNN achieves superlative performance in terms of AUC-ROC curve on both the datasets.
引用
收藏
页码:2027 / 2041
页数:15
相关论文
共 50 条
  • [21] Efficient real-time defect detection for spillway tunnel using deep learning
    Feng, Chuncheng
    Zhang, Hua
    Li, Yonglong
    Wang, Shuang
    Wang, Haoran
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) : 2377 - 2387
  • [22] A real-time forest fire and smoke detection system using deep learning
    Mohammed, Raghad K.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2053 - 2063
  • [23] Network virtualization for real-time processing of object detection using deep learning
    Dae-Young Kim
    Ji-Hoon Park
    Youngchan Lee
    Seokhoon Kim
    Multimedia Tools and Applications, 2021, 80 : 35851 - 35869
  • [24] Automatic real-time crack detection using lightweight deep learning models
    Su, Guoshao
    Qin, Yuanzhuo
    Xu, Huajie
    Liang, Jinfu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [25] Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance
    Nawaratne, Rashmika
    Alahakoon, Damminda
    De Silva, Daswin
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 393 - 402
  • [26] Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning
    Jha, Debesh
    Ali, Sharib
    Tomar, Nikhil Kumar
    Johansen, Havard D.
    Johansen, Dag
    Rittscher, Jens
    Riegler, Michael A.
    Halvorsen, Pal
    IEEE ACCESS, 2021, 9 : 40496 - 40510
  • [27] Real-Time Detection of Strawberry Ripeness Using Augmented Reality and Deep Learning
    Chai, Jackey J. K.
    Xu, Jun-Li
    O'Sullivan, Carol
    SENSORS, 2023, 23 (17)
  • [28] Network virtualization for real-time processing of object detection using deep learning
    Kim, Dae-Young
    Park, Ji-Hoon
    Lee, Youngchan
    Kim, Seokhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35851 - 35869
  • [29] Real-Time Psychological Stress Detection According to ECG Using Deep Learning
    Zhang, Pengfei
    Li, Fenghua
    Zhao, Rongjian
    Zhou, Ruishi
    Du, Lidong
    Zhao, Zhan
    Chen, Xianxiang
    Fang, Zhen
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [30] Detection of Objects and Trajectories in Real-time using Deep Learning by a Controlled Robot
    Sarsenov, Adil
    Yessenbayeva, Aigerim
    Shintemirov, Almas
    Yazici, Adnan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS (ROBOVIS), 2020, : 131 - 140