Multi-input integrative learning using deep neural networks and transfer learning for cyberbullying detection in real-time code-mix data

被引:19
|
作者
Kumar, Akshi [1 ]
Sachdeva, Nitin [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi, India
关键词
Social media; Cyberbullying; Deep learning; Multi-lingual; Code-mix;
D O I
10.1007/s00530-020-00672-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic detection of cyberbullying in social media content is a natural language understanding and generic text classification task. The cultural diversities, country-specific trending topics hash-tags on social media, the unconventional use of typographical resources such as capitals, punctuation, emojis and easy availability of native language keyboards add to the variety and volume of user-generated content compounding the linguistic challenges. This research focuses on cyberbullying detection in the code-mix data, specifically the Hinglish, which refers to the juxtaposition of words from the Hindi and English languages. We explore the problem of cyberbullying prediction and propose MIIL-DNN, a multi-input integrative learning model based on deep neural networks. MIIL-DNN combines information from three sub-networks to detect and classify bully content in real-time code-mix data. It takes three inputs, namely English language features, Hindi language features (transliterated Hindi converted to the Hindi language) and typographic features, which are learned separately using sub-networks (capsule network for English, bi-LSTM for Hindi and MLP for typographic). These are then combined into one unified representation to be used as the input for a final regression output with linear activation. The advantage of using this model-level multi-lingual fusion is that it operates with the unique distribution of each input type without increasing the dimensionality of the input space. The robustness of the technique is validated on two datasets created by scraping data from the popular social networking sites, namely Twitter and Facebook. Experimental evaluation reveals that MIIL-DNN achieves superlative performance in terms of AUC-ROC curve on both the datasets.
引用
收藏
页码:2027 / 2041
页数:15
相关论文
共 50 条
  • [1] Multi-input integrative learning using deep neural networks and transfer learning for cyberbullying detection in real-time code-mix data
    Akshi Kumar
    Nitin Sachdeva
    Multimedia Systems, 2022, 28 : 2027 - 2041
  • [2] Drowsiness detection in real-time via convolutional neural networks and transfer learning
    Salem, Dina
    Waleed, Mohamed
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [3] Cyberbullying detection on multi-modal data using pre-trained deep learning architectures
    Pericherla, Subbaraju
    Ilavarasan, E.
    INGENIERIA SOLIDARIA, 2021, 17 (03):
  • [4] Real-Time Stroke Detection Using Deep Learning and Federated Learning
    Elhanashi, Abdussalam
    Dini, Pierpaolo
    Saponara, Sergio
    Zheng, Qinghe
    Alsharif, Ibrahim
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [5] A feature fusion and detection approach using deep learning for sentimental analysis and offensive text detection from code-mix Malayalam language
    Pillai, Aditya R.
    Arun, Biri
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [6] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [7] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [8] Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks
    Jiang, Peng
    Chen, Yuehan
    Liu, Bin
    He, Dongjian
    Liang, Chunquan
    IEEE ACCESS, 2019, 7 : 59069 - 59080
  • [9] Deep Learning-Based Real-Time Building Occupancy Detection Using AMI Data
    Feng, Cong
    Mehmani, Ali
    Zhang, Jie
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (05) : 4490 - 4501
  • [10] Weapon Detection in Real-Time CCTV Videos Using Deep Learning
    Bhatti, Muhammad Tahir
    Khan, Muhammad Gufran
    Aslam, Masood
    Fiaz, Muhammad Junaid
    IEEE ACCESS, 2021, 9 : 34366 - 34382