Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae

被引:204
作者
Da Silva, Nancy A. [1 ]
Srikrishnan, Sneha [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
关键词
yeast; plasmids; genomic integration; promoters; HIGH-COPY-NUMBER; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE GENES; ANTIMALARIAL-DRUG PRECURSOR; ALPHA-AMYLASE PRODUCTION; HIGH-LEVEL EXPRESSION; PYRUVATE-KINASE GENE; HETEROLOGOUS PROTEINS; DELTA-INTEGRATION; SHUTTLE VECTORS; HOMOLOGOUS RECOMBINATION;
D O I
10.1111/j.1567-1364.2011.00769.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 171 条
[2]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[3]  
ALBER T, 1982, Journal of Molecular and Applied Genetics, V1, P419
[4]   A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae [J].
Alberti, Simon ;
Gitler, Aaron D. ;
Lindquist, Susan .
YEAST, 2007, 24 (10) :913-919
[5]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[6]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[7]   A synthetic library of RNA control modules for predictable tuning of gene expression in yeast [J].
Babiskin, Andrew H. ;
Smolke, Christina D. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[9]   GENETIC ORDER OF GALACTOSE STRUCTURAL GENES IN SACCHAROMYCES-CEREVISIAE [J].
BASSEL, J ;
MORTIMER, R .
JOURNAL OF BACTERIOLOGY, 1971, 108 (01) :179-&
[10]   A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol [J].
Becker, J ;
Boles, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) :4144-4150