Approximate Genome-Based Kernel Models for Large Data Sets Including Main Effects and Interactions

被引:14
作者
Cuevas, Jaime [1 ]
Montesinos-Lopez, Osval A. [2 ]
Martini, J. W. R. [3 ]
Perez-Rodriguez, Paulino [4 ]
Lillemo, Morten [5 ]
Crossa, Jose [3 ,4 ]
机构
[1] Univ Quintana Roo, Chetmal, Quintana Roo, Mexico
[2] Univ Colima, Fac Telemat, Colima, Mexico
[3] Int Maize & Wheat Improvement Ctr CIMMYT, Texcoco, Mexico
[4] Colegio Postgrad, Texcoco, Mexico
[5] Norwegian Univ Life Sci NMBU, Dept Plant Sci iPV, As, Norway
基金
比尔及梅琳达.盖茨基金会;
关键词
genomic-enabled prediction; approximate kernels; computing time; genotype × environment interaction; large data sets; ENABLED PREDICTION; GENETIC VALUES; ASSISTED PREDICTION; REGRESSION; SELECTION; PEDIGREE; COMPUTE; INVERSE; PACKAGE;
D O I
10.3389/fgene.2020.567757
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid development of molecular markers and sequencing technologies has made it possible to use genomic prediction (GP) and selection (GS) in animal and plant breeding. However, when the number of observations (n) is large (thousands or millions), computational difficulties when handling these large genomic kernel relationship matrices (inverting and decomposing) increase exponentially. This problem increases when genomic x environment interaction and multi-trait kernels are included in the model. In this research we propose selecting a small number of lines m(m < n) for constructing an approximate kernel of lower rank than the original and thus exponentially decreasing the required computing time. First, we describe the full genomic method for single environment (FGSE) with a covariance matrix (kernel) including all n lines. Second, we select m lines and approximate the original kernel for the single environment model (APSE). Similarly, but including main effects and G x E, we explain a full genomic method with genotype x environment model (FGGE), and including m lines, we approximated the kernel method with G x E (APGE). We applied the proposed method to two different wheat data sets of different sizes (n) using the standard linear kernel Genomic Best Linear Unbiased Predictor (GBLUP) and also using eigen value decomposition. In both data sets, we compared the prediction performance and computing time for FGSE versus APSE; we also compared FGGE versus APGE. Results showed a competitive prediction performance of the approximated methods with a significant reduction in computing time. Genomic prediction accuracy depends on the decay of the eigenvalues (amount of variance information loss) of the original kernel as well as on the size of the selected lines m.
引用
收藏
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 2014, ARXIV14017953
[2]   Genomic Prediction of Breeding Values when Modeling Genotype x Environment Interaction using Pedigree and Dense Molecular Markers [J].
Burgueno, Juan ;
de los Campos, Gustavo ;
Weigel, Kent ;
Crossa, Jose .
CROP SCIENCE, 2012, 52 (02) :707-719
[3]   Genomic Selection in Plant Breeding: Methods, Models, and Perspectives [J].
Crossa, Jose ;
Perez-Rodriguez, Paulino ;
Cuevas, Jaime ;
Montesinos-Lopez, Osval ;
Jarquin, Diego ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Gonzalez-Camacho, Juan M. ;
Perez-Elizalde, Sergio ;
Beyene, Yoseph ;
Dreisigacker, Susanne ;
Singh, Ravi ;
Zhang, Xuecai ;
Gowda, Manje ;
Roorkiwal, Manish ;
Rutkoski, Jessica ;
Varshney, Rajeev K. .
TRENDS IN PLANT SCIENCE, 2017, 22 (11) :961-975
[4]   Extending the Marker x Environment Interaction Model for Genomic-Enabled Prediction and Genome-Wide Association Analysis in Durum Wheat [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Maccaferri, Marco ;
Tuberosa, Roberto ;
Burgueno, J. ;
Perez-Rodriguez, Paulino .
CROP SCIENCE, 2016, 56 (05) :2193-2209
[5]   Genomic Selection and Prediction in Plant Breeding [J].
Crossa, Jose ;
Perez, Paulino ;
de los Campos, Gustavo ;
Mahuku, George ;
Dreisigacker, Susanne ;
Magorokosho, Cosmos .
JOURNAL OF CROP IMPROVEMENT, 2011, 25 (03) :239-261
[6]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406
[7]  
Csato L., 2002, NCRG2001014
[8]   Genomic Prediction of Genotype x Environment Interaction Kernel Regression Models [J].
Cuevas, Jaime ;
Crossa, Jose ;
Soberanis, Victor ;
Perez-Elizalde, Sergio ;
Perez-Rodriguez, Paulino ;
de los Campos, Gustavo ;
Montesinos-Lopez, O. A. ;
Burgueno, Juan .
PLANT GENOME, 2016, 9 (03)
[9]  
de los Campos G., 2018, BGLR BAYESIAN GENERA
[10]   Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods [J].
de los Campos, Gustavo ;
Gianola, Daniel ;
Rosa, Guilherme J. M. ;
Weigel, Kent A. ;
Crossa, Jose .
GENETICS RESEARCH, 2010, 92 (04) :295-308