Revisiting the Leinster groups

被引:2
作者
Baishya, Sekhar Jyoti [1 ]
机构
[1] North Eastern Hill Univ, Dept Math, Shillong 793022, Meghalaya, India
关键词
FINITE-GROUPS;
D O I
10.1016/j.crma.2013.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite group is said to be a Leinster group if the sum of the orders of its normal subgroups equals twice the order of the group itself. In this paper we give some new results concerning Leinster groups. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 13 条
[1]  
Ashrafi A. R., 2000, J KOREAN J COMPUT AP, V7, P115, DOI DOI 10.1007/BF03009931
[2]  
Baishya S.J., 2013, REND SEMIN IN PRESS
[3]  
Baishya SJ, 2013, INT ELECTRON J ALGEB, V13, P53
[4]   On arithmetic functions of finite groups [J].
Das, Ashish Kumar .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (01) :45-58
[5]   Perfect Numbers and Finite Groups [J].
De Medts, Tom ;
Maroti, Attila .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 129 :17-33
[6]   FINITE GROUPS WHOSE NONCENTRAL COMMUTING ELEMENTS HAVE CENTRALIZERS OF EQUAL SIZE [J].
Dolfi, Silvio ;
Herzog, Marcel ;
Jabara, Enrico .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) :293-304
[7]  
Leinster T., 2001, ARXIVMATHGR0104012V1
[8]   Central extensions and commutativity degree [J].
Lescot, P .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (10) :4451-4460
[9]  
Medts T.D., 2012, B BELG MATH SOC-SIM, V15, P699
[10]  
ORE O, 1948, AM MATH MONTHLY, V55, P615