Blow up at infinity of solutions for integro-differential equation

被引:16
作者
Liu, Gongwei [1 ]
Zhang, Hongwei [1 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Blow up at infinity; Strong damping term; Integro-differential equation; Source term; GLOBAL NONEXISTENCE THEOREMS; SEMILINEAR WAVE-EQUATION; INITIAL-ENERGY SOLUTIONS; EVOLUTION-EQUATIONS; ASYMPTOTIC STABILITY; EXISTENCE; DISSIPATION; DECAY; SYSTEMS;
D O I
10.1016/j.amc.2013.12.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the blow up at infinity of solutions for the integro-differential equation with strong damping term as well as a time dependent nonlinear dissipative function Q and a driving force term f, under the homogeneous Dirichlet boundary conditions. Some interesting applications are given in particular subcases of Q and f. This improves earlier results in the literatures. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 22 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]  
[Anonymous], 2001, ENG RUBBER DESIGN RU
[3]   LIFESPAN ESTIMATES FOR SOLUTIONS OF POLYHARMONIC KIRCHHOFF SYSTEMS [J].
Autuori, Giuseppina ;
Colasuonno, Francesca ;
Pucci, Patrizia .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (02)
[4]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[5]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[6]   GLOBAL EXISTENCE, UNIFORM DECAY AND EXPONENTIAL GROWTH FOR A CLASS OF SEMI-LINEAR WAVE EQUATION WITH STRONG DAMPING [J].
Chen, Hua ;
Liu, Gongwei .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) :41-58
[7]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[8]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[9]  
Gerbi S., 2008, Adv. Differential Equations, V13, P1051
[10]   EXPONENTIAL DECAY FOR SOLUTIONS TO SEMILINEAR DAMPED WAVE EQUATION [J].
Gerbi, Stephane ;
Said-Houari, Belkacem .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03) :559-566