Generalized over-relaxed proximal algorithm based on A-maximal monotonicity framework and applications to inclusion problems

被引:10
作者
Verma, Ram U. [1 ]
机构
[1] Int Publicat USA, Orlando, FL 32828 USA
关键词
Variational inclusions; Maximal monotone mapping; A-maximal monotone mapping; Generalized resolvent operator; VARIATIONAL INCLUSIONS; SENSITIVITY-ANALYSIS; SPLITTING METHOD; POINT ALGORITHM; SYSTEM; (A; OPERATORS;
D O I
10.1016/j.mcm.2008.05.045
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
General framework for the over-relaxed proximal point algorithm using the notion of A-maximal monotonicity (also referred to as A-monotonicity in the literature) is developed, and then the convergence analysis for this algorithm in the context of solving a general class of nonlinear inclusion problems is examined along with some auxiliary results involving A-maximal monotone mappings in a Hilbert space setting. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1587 / 1594
页数:8
相关论文
共 33 条
[21]  
Verma R. U., 2006, MATH SCI RES J, V10, P79
[22]   A-monotone nonlinear relaxed cocoercive variational inclusions [J].
Verma, Ram U. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (02) :386-396
[23]   Rockafellar's celebrated theorem based on A-maximal monotonicity design [J].
Verma, Ram U. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (04) :355-360
[24]   Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A, η)-monotone mappings [J].
Verma, Ram U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :969-975
[25]   General system of (A, η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm [J].
Verma, Rm U. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (03) :326-335
[26]  
VERMA RU, 2000, MATH SCI RES HOT LIN, V4, P29
[27]  
VERMA RU, 1999, MATH SCI RES HOT LIN, V3, P7
[28]  
VERMA RU, 2000, MATH SCI RES HOT LIN, V4, P21
[29]  
VERMA RU, 2000, MATH SCI RES HOT LIN, V4, P23
[30]  
VERMA RU, 2000, MATH SCI RES HOT LIN, V4, P17