Tamm-Hubbard surface states in the continuum

被引:44
作者
Longhi, S. [1 ]
Della Valle, G.
机构
[1] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy
关键词
BOUND-STATES;
D O I
10.1088/0953-8984/25/23/235601
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the framework of the Bose-Hubbard model, we show that two-particle surface bound states embedded in the continuum (BIC) can be sustained at the edge of a semi-infinite one-dimensional tight-binding lattice for any infinitesimally-small impurity potential V at the lattice boundary. Such thresholdless surface states, which can be referred to as Tamm-Hubbard BIC states, exist provided that the impurity potential V is attractive (repulsive) and the particle-particle Hubbard interaction U is repulsive (attractive), i.e. for UV < 0.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Fractional Bloch oscillations in photonic lattices [J].
Corrielli, Giacomo ;
Crespi, Andrea ;
Della Valle, Giuseppe ;
Longhi, Stefano ;
Osellame, Roberto .
NATURE COMMUNICATIONS, 2013, 4
[2]  
Davison S. G., 1996, BASIC THEORY SURFACE
[3]   Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum [J].
de Guevara, M. L. Ladron ;
Orellana, P. A. .
PHYSICAL REVIEW B, 2006, 73 (20)
[4]   Ghost Fano resonance in a double quantum dot molecule attached to leads [J].
de Guevara, MLL ;
Claro, F ;
Orellana, PA .
PHYSICAL REVIEW B, 2003, 67 (19)
[5]  
Essler F. H. L., 2005, The One-Dimensional Hubbard Model
[6]   THEORY OF RESONANCE REACTIONS [J].
FONDA, L ;
NEWTON, RG .
ANNALS OF PHYSICS, 1960, 10 (04) :490-515
[7]   PHYSICAL REALIZATION OF BOUND-STATES IN THE CONTINUUM [J].
FRIEDRICH, H ;
WINTGEN, D .
PHYSICAL REVIEW A, 1985, 31 (06) :3964-3966
[8]   Lossless interface modes at the boundary between two periodic dielectric structures [J].
Kavokin, AV ;
Shelykh, IA ;
Malpuech, G .
PHYSICAL REVIEW B, 2005, 72 (23)
[9]   Nonlinear Tamm states and surface effects in periodic photonic structures [J].
Kivshar, Yu. S. .
LASER PHYSICS LETTERS, 2008, 5 (10) :703-713
[10]   Bound states in the continuum in a single-level Fano-Anderson model [J].
Longhi, S. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 57 (01) :45-51