Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy

被引:30
作者
Sohn, J. [1 ]
Do, K. A. [2 ]
Liu, S. [1 ]
Chen, H. [1 ]
Mills, G. B. [3 ]
Hortobagyi, G. N. [1 ]
Meric-Bernstam, F. [4 ]
Gonzalez-Angulo, A. M. [1 ,3 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Surg Oncol FMB, Houston, TX 77030 USA
关键词
neoadjuvant chemotherapy; molecular characterization; residual disease; resistance; triple receptor-negative breast cancer; FACTOR-BINDING PROTEIN-2; TRASTUZUMAB RESISTANCE; MAMMALIAN TARGET; PI3K PATHWAY; ACTIVATION; INHIBITION; AKT; SURVIVAL; OVEREXPRESSION; PREDICTS;
D O I
10.1093/annonc/mdt248
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In this study, we used functional proteomics to determine the molecular characteristics of residual triple receptor-negative breast cancer (TNBC) patients after neoadjuvant systemic chemotherapy (NCT) and their relationship with patient outcomes in order to identify potential targets for therapy. Protein was extracted from 54 residual TNBCs, and 76 proteins related to breast cancer signaling were measured by reverse phase protein arrays (RPPAs). Univariable and multivariable Cox proportional hazard models were fitted for each protein. Survival outcomes were estimated by the Kaplan-Meier product limit method. Training and cross validation were carried out. The coefficients estimated from the multivariable Cox model were used to calculate a risk score (RS) for each sample. Multivariable analysis using the top 25 proteins from univariable analysis at a false discovery rate (FDR) of 0.3 showed that AKT, IGFBP2, LKB1, S6 and Stathmin were predictors of recurrence-free survival (RFS). The cross-validation model was reproducible. The RS model calculated based on the multivariable analysis was -1.1086 x AKT + 0.2501 x IGFBP2 - 0.6745 x LKB1+1.0692 x S6 + 1.4086 x stathmin with a corresponding area under the curve, AUC = 0.856. The RS was an independent predictor of RFS (HR = 3.28, 95%CI = 2.07-5.20, P < 0.001). We found a five-protein model that independently predicted RFS risk in patients with residual TNBC disease. The PI3 K pathway may represent potential therapeutic targets in this resistant disease.
引用
收藏
页码:2522 / 2526
页数:5
相关论文
共 26 条
[1]  
Agarwal R, 2010, CURR OPIN INVEST DR, V11, P615
[2]   Characterization and detection of cellular and proteomic alterations in stable stathmin-overexpressing, taxol-resistant BT549 breast cancer cells using offgel IEF/PAGE difference gel electrophoresis [J].
Balasubramani, Manimalha ;
Nakao, Chitose ;
Uechi, Guy T. ;
Cardamone, John ;
Kamath, Kathy ;
Leslie, Kristen L. ;
Balachandran, Raghavan ;
Wilson, Leslie ;
Day, Billy W. ;
Jordan, Mary Ann .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2011, 722 (02) :154-164
[3]   A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer [J].
Berns, Katrien ;
Horlings, Hugo M. ;
Hennessy, Bryan T. ;
Madiredjo, Mandy ;
Hijmans, E. Marielle ;
Beelen, Karin ;
Linn, Sabine C. ;
Gonzalez-Angulo, Ana Maria ;
Stemke-Hale, Katherine ;
Hauptmann, Michael ;
Beijersbergen, Roderick L. ;
Mills, Gordon B. ;
de Vijver, Marc J. van ;
Bernards, Rene .
CANCER CELL, 2007, 12 (04) :395-402
[4]   Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours [J].
Curmi, PA ;
Noguès, C ;
Lachkar, S ;
Carelle, N ;
Gonthier, MP ;
Sobel, A ;
Lidereau, R ;
Bièche, I .
BRITISH JOURNAL OF CANCER, 2000, 82 (01) :142-150
[5]   Triple-Negative Breast Cancer [J].
Foulkes, William D. ;
Smith, Ian E. ;
Reis-Filho, Jorge S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (20) :1938-1948
[6]   The prognostic value of Stathmin-1, S100A2, and SYK proteins in ER-positive primary breast cancer patients treated with adjuvant tamoxifen monotherapy:: an immunohistochemical study [J].
Golouh, Rastko ;
Cufer, Tanja ;
Sadikov, Aleksander ;
Nussdorfer, Petra ;
Usher, Pernille Autzen ;
Bruenner, Nils ;
Schmitt, Manfred ;
Lesche, Ralf ;
Maier, Sabine ;
Timmermans, Mieke ;
Foekens, John A. ;
Martens, John W. M. .
BREAST CANCER RESEARCH AND TREATMENT, 2008, 110 (02) :317-326
[7]   Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer [J].
Gonzalez-Angulo A.M. ;
Hennessy B.T. ;
Meric-Bernstam F. ;
Sahin A. ;
Liu W. ;
Ju Z. ;
Carey M.S. ;
Myhre S. ;
Speers C. ;
Deng L. ;
Broaddus R. ;
Lluch A. ;
Aparicio S. ;
Brown P. ;
Pusztai L. ;
Symmans W.F. ;
Alsner J. ;
Overgaard J. ;
Borresen-Dale A.-L. ;
Hortobagyi G.N. ;
Coombes K.R. ;
Mills G.B. .
Clinical Proteomics, 2011, 8 (1)
[8]  
Hoeflich A, 2001, CANCER RES, V61, P8601
[9]   Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells [J].
Jeon, T-Y ;
Han, M-E ;
Lee, Y-W ;
Lee, Y-S ;
Kim, G-H ;
Song, G-A ;
Hur, G-Y ;
Kim, J-Y ;
Kim, H-J ;
Yoon, S. ;
Baek, S-Y ;
Kim, B-S ;
Kim, J-B ;
Oh, S-O .
BRITISH JOURNAL OF CANCER, 2010, 102 (04) :710-718
[10]   Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: An update [J].
Kaufmann, M ;
Hortobagyi, GN ;
Goldhirsch, A ;
Scholl, S ;
Makris, A ;
Valagussa, P ;
Blohmer, JU ;
Eiermann, W ;
Jackesz, R ;
Jonat, W ;
Lebeau, A ;
Loibl, S ;
Miller, W ;
Seeber, S ;
Semiglazov, V ;
Smith, R ;
Souchon, R ;
Stearns, V ;
Untch, M ;
von Minckwitz, G .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (12) :1940-1949