High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling

被引:43
作者
Hug, S. [1 ,2 ]
Raue, A. [1 ,3 ]
Hasenauer, J. [1 ]
Bachmann, J. [4 ]
Klingmueller, U. [4 ]
Timmer, J. [3 ,5 ,6 ,7 ]
Theis, F. J. [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Munich, Germany
[2] Tech Univ Munich, Dept Math, D-80290 Munich, Germany
[3] Univ Freiburg, Inst Phys, Freiburg, Germany
[4] German Canc Res Ctr, DKFZ ZMBH Alliance, Heidelberg, Germany
[5] BIOSS Ctr Biol Signalling Studies, Freiburg, Germany
[6] Freiburg Inst Adv Studies FRIAS, Freiburg, Germany
[7] Linkoping Univ, Dept Clin & Expt Med, S-58183 Linkoping, Sweden
关键词
Parameter estimation; Bayesian inference; Profile likelihood; Cellular signal transduction pathways; Ordinary differential equation models; MONTE-CARLO METHOD; CONVERGENCE;
D O I
10.1016/j.mbs.2013.04.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling. We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance the explanatory power of the model. This study represents a proof of principle that detailed statistical analysis for quantitative dynamical modeling used in systems biology is feasible also in high-dimensional parameter spaces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 51 条
[1]  
[Anonymous], 1993, Probabilistic inference using Markov chain Monte Carlo methods
[2]  
[Anonymous], 1992, STAT SCI
[3]  
[Anonymous], 2006, Stochastic modelling for systems biology
[4]  
Bachmann J., 2011, MOL SYSTEMS BIOL, V7
[5]   Covering a Broad Dynamic Range: Information Processing at the Erythropoietin Receptor [J].
Becker, Verena ;
Schilling, Marcel ;
Bachmann, Julie ;
Baumann, Ute ;
Raue, Andreas ;
Maiwald, Thomas ;
Timmer, Jens ;
Klingmueller, Ursula .
SCIENCE, 2010, 328 (5984) :1404-1408
[6]   The metropolis algorithm [J].
Beichl, I ;
Sullivan, F .
COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (01) :65-69
[7]  
Bernardo J., 1994, BAYESIAN THEORY, V62
[8]  
Bohl S., 2009, THESIS RUPERTO CAROL
[9]   Convergence assessment techniques for Markov chain Monte Carlo [J].
Brooks, SP ;
Roberts, GO .
STATISTICS AND COMPUTING, 1998, 8 (04) :319-335
[10]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117