Sobolev spaces on Lie groups: Embedding theorems and algebra properties

被引:20
作者
Bruno, Tommaso [1 ]
Peloso, Marco M. [2 ]
Tabacco, Anita [1 ]
Vallarino, Maria [1 ]
机构
[1] Politecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, Italy
关键词
Sobolev embeddings; Sobolev algebras; Lie groups; Riesz transforms; MULTIPLIERS;
D O I
10.1016/j.jfa.2018.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a noncompact connected Lie group, denote with rho a right Haar measure and choose a family of linearly independent left-invariant vector fields X on G satisfying Hormander's condition. Let chi be a positive character of G and consider the measure mu(chi) whose density with respect to rho is chi. In this paper, we introduce Sobolev spaces L-alpha(p)(mu(chi)) adapted to X and mu(chi) (1 < p < infinity, alpha >= 0) and study embedding theorems and algebra properties of these spaces. As an application, we prove local well-posedness and regularity results of solutions of some nonlinear heat and Schrodinger equations on the group. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:3014 / 3050
页数:37
相关论文
共 34 条
[1]   The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups [J].
Agrachev, Andrei ;
Boscain, Ugo ;
Gauthier, Jean-Paul ;
Rossi, Francesco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2621-2655
[2]  
[Anonymous], 1982, NONLINEAR ANAL MANIF
[3]   ALGEBRA PROPERTIES FOR SOBOLEV SPACES - APPLICATIONS TO SEMILINEAR PDES ON MANIFOLDS [J].
Badr, Nadine ;
Bernicot, Frederic ;
Russ, Emmanuel .
JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 :509-544
[4]   SOBOLEV ALGEBRAS ON CERTAIN NILPOTENT GROUPS [J].
BOHNKE, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :322-343
[5]  
Bruno T., TRIEBEL LIZORK UNPUB
[6]   Comparison of Spaces of Hardy Type for the Ornstein-Uhlenbeck Operator [J].
Carbonaro, Andrea ;
Mauceri, Giancarlo ;
Meda, Stefano .
POTENTIAL ANALYSIS, 2010, 33 (01) :85-105
[7]  
Carbonaro A, 2009, ANN SCUOLA NORM-SCI, V8, P543
[8]   Sobolev algebras on Lie groups and Riemannian manifolds [J].
Coulhon, T ;
Russ, E ;
Tardivel-Nachef, V .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) :283-342
[9]   SOBOLEV SPACES ON GRADED LIE GROUPS [J].
Fischer, Veronique ;
Ruzhansky, Michael .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (04) :1671-1723
[10]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204