Piezoresistive InGaAs/GaAs Nanosprings with Metal Connectors

被引:57
作者
Hwang, Gilgueng [1 ]
Hashimoto, Hideki [1 ]
Bell, Dominik J. [2 ]
Dong, Lixin [2 ]
Nelson, Bradley J. [2 ]
Schoen, Silke [3 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo, Japan
[2] Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Ctr Micro & Nanosci 1, CH-8093 Zurich, Switzerland
关键词
CRITICAL THICKNESS; CARBON; FABRICATION; NANOTUBES; MECHANICS; GROWTH; GAAS;
D O I
10.1021/nl8026718
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents the fabrication, assembly, and characterization of piezoresistive nanosprings for creating nanoelectromechanical systems. The fabrication process is based on conventional microfabrication techniques to create a planar pattern in a 27nm thick, n-type InGaAs/GaAs bilayer that self-forms into three-dimensional structures during a wet etch release. As the nanosprings have lower doped thin and flexible layers, small metal pads have been attached to both sides for achieving stable ohmic contact with electrodes. Nanorobotic manipulation is applied to assemble the nanosprings between electrodes using electron-beam-induced deposition inside a scanning electron microscope, and the bridged nanosprings were then characterized for electromechanical properties. With their strong piezoresistive response, low stiffness, large-displacement capability, and excellent fatigue resistance, they are well-suited to function as sensing elements in high-resolution, large-range electromechanical sensors.
引用
收藏
页码:554 / 561
页数:8
相关论文
共 35 条
[1]   Three-dimensional nanosprings for electromechanical sensors [J].
Bell, D. J. ;
Sun, Y. ;
Zhang, L. ;
Dong, L. X. ;
Nelson, B. J. ;
Gruetzmacher, D. .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130 (54-61) :54-61
[2]   Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings [J].
Bell, DJ ;
Dong, LX ;
Nelson, BJ ;
Golling, M ;
Zhang, L ;
Grützmacher, D .
NANO LETTERS, 2006, 6 (04) :725-729
[3]   Magnetic manipulation of copper-tin nanowires capped with nickel ends [J].
Bentley, AK ;
Trethewey, JS ;
Ellis, AB ;
Crone, WC .
NANO LETTERS, 2004, 4 (03) :487-490
[4]   Mechanics of a carbon nanocoil [J].
Chen, XQ ;
Zhang, SL ;
Dikin, DA ;
Ding, WQ ;
Ruoff, RS ;
Pan, LJ ;
Nakayama, Y .
NANO LETTERS, 2003, 3 (09) :1299-1304
[5]   Electron-beam-induced deposition with carbon nanotube emitters [J].
Dong, LX ;
Arai, F ;
Fukuda, T .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1919-1921
[6]   Superelasticity and nanofracture mechanics of ZnO nanohelices [J].
Gao, Pu Xian ;
Mai, Wenjie ;
Wang, Zhong Lin .
NANO LETTERS, 2006, 6 (11) :2536-2543
[7]   Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J].
Gao, PX ;
Ding, Y ;
Mai, WJ ;
Hughes, WL ;
Lao, CS ;
Wang, ZL .
SCIENCE, 2005, 309 (5741) :1700-1704
[8]   Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy [J].
Han, Xiaodong ;
Zhang, Ze ;
Wang, Zhong Lin .
NANO, 2007, 2 (05) :249-271
[9]   High-sensitivity piezoresistive cantilevers under 1000 Å thick [J].
Harley, JA ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 75 (02) :289-291
[10]   Giant piezoresistance effect in silicon nanowires [J].
He, Rongrui ;
Yang, Peidong .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :42-46