The Hardy-Rellich inequality for polyharmonic operators

被引:38
作者
Owen, MP [1 ]
机构
[1] Univ London Kings Coll, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1017/S0308210500013160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hardy-Rellich inequality given here generalizes a Hardy inequality of Davies, from the case of the Dirichlet Laplacian of a region Omega subset of or equal to R-N to that of the higher-order polyharmonic operators with Dirichlet boundary conditions. The inequality yields some immediate spectral information for the polyharmonic operators and also bounds on the trace of the associated semigroups and resolvents.
引用
收藏
页码:825 / 839
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1980, LOND MATH SOC MONOGR
[2]  
Davies E. B., 1989, CAMBRIDGE TRACTS MAT, V92
[3]   TRACE PROPERTIES OF THE DIRICHLET LAPLACIAN [J].
DAVIES, EB .
MATHEMATISCHE ZEITSCHRIFT, 1985, 188 (02) :245-251
[4]  
DAVIES EB, 1984, J OPERAT THEOR, V12, P177
[5]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389
[6]  
DAVIES EB, 1996, CAMBRIDGE STUDIES AD, V42
[7]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[9]  
MAZYA VG, 1985, SPRINGER SERIES SOVI
[10]  
Opic B., 1990, Pitman Research Notes in Mathematics Series, V219