New exact solitary pattern solutions of the nonlinearly dispersive R(m, n) equations

被引:13
作者
Inc, M [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
关键词
D O I
10.1016/j.chaos.2005.08.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish exact solutions for the R(m, n) equations by using a new sc-nc method. As a result, abundant new exact solitary pattern, solitary wave, periodic wave and singular solitary wave solutions of this equation are obtained with minimal calculations. The new solitary pattern solutions have infinite slopes or cusps, solitary wave and singular solitary wave solutions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 33 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :745-757
[3]   Particle methods for dispersive equations [J].
Chertock, A ;
Levy, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (02) :708-730
[4]   SYMMETRY REDUCTIONS AND EXACT-SOLUTIONS OF A CLASS OF NONLINEAR HEAT-EQUATIONS [J].
CLARKSON, PA ;
MANSFIELD, EL .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 70 (03) :250-288
[5]   Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations [J].
Cooper, F ;
Hyman, JM ;
Khare, A .
PHYSICAL REVIEW E, 2001, 64 (02) :13
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]  
Gu CH., 1999, DARBOUX TRANSFORMATI
[9]  
Inc M, 2005, Z NATURFORSCH A, V60, P7
[10]  
Inc M, 2004, Z NATURFORSCH A, V59, P359