Unprecedented High Temperature CO2 Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal-Organic Framework

被引:60
作者
Das, Prasenjit [1 ]
Mandal, Sanjay K. [1 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Dept Chem Sci, Mohali 140306, Punjab, India
关键词
undulated metal-organic framework; paddle-wheel structure; high temperature CO2 selectivity; CBMC simulation; CO2; conversion; bifunctional heterogeneous catalysis; LIGHT-HYDROCARBON SEPARATION; CARBON-CAPTURE; ADSORPTION PROPERTIES; HYDROGEN ADSORPTION; EFFICIENT; MOF; FUNCTIONALIZATION; CONVERSION; SURFACE; STORAGE;
D O I
10.1021/acsami.0c09024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Post- and precombustion CO2 capture and separation are the vital challenges from industrial viewpoint, as the accessible technologies are not cost-effective and cumbersome. Thus, the development of functional metal-organic frameworks (MOFs) that are found to be promising materials for selective CO2 capture, separation, and conversion is gaining an importance in the scientific world. Based on the strategic design, a new functionalized triazine-based undulated paddle-wheel Cu-MOF (1), {[Cu(MTABA)(H2O)]center dot 4H(2)O center dot 2EtOH center dot DMF}(n) (where, H(2)MTABA = 4,4'-((6-methoxy- 1,3,5-triazine-2,4-diyl) bis (azanediyl))dibenzoic acid), has been synthesized under solvothermal conditions and fully characterized. MOF 1 contains a one-dimensional channel along the a-axis with pore walls decorated with open metal sites, and multifunctional groups (amine, triazine, and methoxy). Unlike other porous materials, activated 1 (1') possesses exceptional increment in CO2/N-2 and CO2/CH4 selectivity with increased temperature calculated by the ideal adsorbed solution theory. With an increase in temperature from 298 to 313 K, the selectivity of CO2 rises from 350.3 to 909.5 at zero coverage, which is unprecedented till date. Moreover, 1' behaves as a bifunctional heterogeneous catalyst through Lewis acid (open metal) and Bronsted acid sites to facilitate the chemical fixation of CO2 to cyclic carbonates under ambient conditions. The high selectivity for CO(2 )by 1' even at higher temperature was further corroborated with configurational bias Monte Carlo molecular simulation that ascertains the multiple CO2-philic sites and epoxide binding sites in 1' to further decipher the mechanistic pathway.
引用
收藏
页码:37137 / 37146
页数:10
相关论文
共 66 条
[1]   Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J].
Adil, Karim ;
Belmabkhout, Youssef ;
Pillai, Renjith S. ;
Cadiau, Amandine ;
Bhatt, Prashant M. ;
Assen, Ayalew H. ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3402-3430
[2]   From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake [J].
Aijaz, Arshad ;
Akita, Tomoki ;
Yang, Hui ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (49) :6498-6501
[3]   Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins [J].
Assen, Ayalew H. ;
Belmabkhout, Youssef ;
Adil, Karim ;
Bhatt, Prashant M. ;
Xue, Dong-Xu ;
Jiang, Hao ;
Eddaoudi, Mohamed .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) :14353-14358
[4]   A stable metal-organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture [J].
Bao, Shao-Juan ;
Krishna, Rajamani ;
He, Ya-Bing ;
Qin, Jun-Sheng ;
Su, Zhong-Min ;
Li, Shun-Li ;
Xie, Wei ;
Du, Dong-Ying ;
He, Wen-Wen ;
Zhang, Shu-Ran ;
Lan, Ya-Qian .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) :7361-7367
[5]   Gas storage in porous aromatic frameworks (PAFs) [J].
Ben, Teng ;
Pei, Cuiying ;
Zhang, Daliang ;
Xu, Jun ;
Deng, Feng ;
Jing, Xiaofei ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3991-3999
[6]   A Hafnium-Based Metal Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation [J].
Beyzavi, M. Hassan ;
Klet, Rachel C. ;
Tussupbayev, Samat ;
Borycz, Joshua ;
Vermeulen, Nicolaas A. ;
Cramer, Christopher J. ;
Stoddart, J. Fraser ;
Hupp, Joseph T. ;
Farha, Omar K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (45) :15861-15864
[7]   Polar Sulfone-Functionalized Oxygen-Rich Metal-Organic Frameworks for Highly Selective CO2 Capture and Sensitive Detection of Acetylacetone at ppb Level [J].
Chakraborty, Gouri ;
Das, Prasenjit ;
Mandal, Sanjay K. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) :11724-11736
[8]   A Robust Metal-Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO2/Fluorocarbon Capture [J].
Chen, Cheng-Xia ;
Zheng, Shao-Ping ;
Wei, Zhang-Wen ;
Cao, Chen-Chen ;
Wang, Hai-Ping ;
Wang, Dawei ;
Jiang, Ji-Jun ;
Fenske, Dieter ;
Su, Cheng-Yong .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (17) :4060-4064
[9]   Carbon Capture and Sequestration [J].
Chu, Steven .
SCIENCE, 2009, 325 (5948) :1599-1599
[10]   Multipoint Interactions Enhanced CO2 Uptake: A Zeolite-like Zinc-Tetrazole Framework with 24-Nuclear Zinc Cages [J].
Cui, Ping ;
Ma, Yu-Guang ;
Li, Huan-Huan ;
Zhao, Bin ;
Li, Jian-Rong ;
Cheng, Peng ;
Balbuena, Perla B. ;
Zhou, Hong-Cai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (46) :18892-18895